Agriculture News

August 31, 2016

Purdue researchers discover signaling cascade that drives fatty tumors

WEST LAFAYETTE, Ind. - A common cell signaling pathway that controls differentiation of stem cells may also control the formation of tumor cells in fat, according to a Purdue University study.

This signaling pathway, called Notch signaling, has been widely reported to determine the identity and control the differentiation of a variety of stem cells in different tissues. Notch signaling occurs between two neighboring cells, in which one cell sends a signal to the neighbor cell to control its gene transcription program that determines the identity of the neighbor cell.  

Stem cells are basically blank slates, waiting to become a particular, differentiated type of cell. In fat cells, that differentiation is controlled by a regular pattern of Notch signaling. Aberrant suppression or activation of Notch signaling may disrupt the normal differentiation process and maintenance of stem cells.

Shihuan Kuang, professor of animal sciences at Purdue, had earlier determined that when Notch signaling is suppressed, white fat cells, which are linked to obesity due to their ability to accumulate excessive lipids, turn into beige fat cells. Beige fat is more metabolically active and breaks down lipids by turning them into heat.

It's possible that humans evolved to build up white fat, which acted as insulation but also as an energy store and endocrine organ. The physical activity required to live off the land would have kept white fat from over accumulating in most people. As we have become less active, however, energy stored in white fat is not spent and its over-accumulation is associated with metabolic diseases such as diabetes, obesity and some types of cancer.

"Beige fat, if you consider human physiology, is wasting energy," said Pengpeng Bi, a former Purdue postdoctoral fellow and lead author. "But it would be good for us now because we are overfed and more inactive."

A previous study published by Bi and Kuang in Nature Medicine has shown that when Notch signaling is inhibited in the fat cells of mice, the animals are obesity-resistant and less likely to develop diabetes when fed a high-fat diet.

This time, the group wanted to know what would happen if Notch signaling is overactive in fat cells. The findings, published in the Journal of Experimental Medicine, show that when Notch signaling is turned up beyond normal levels in mice, those same white fat cells degenerate and turn cancerous.

"A normal amplitude of Notch signaling is required for a human or animal to develop, but overactive Notch signaling is linked to cancer in several cell types," Kuang said. "Our study demonstrates for the first time that Notch activation is sufficient to drive the development of malignant tumors in fat tissue, termed liposarcoma."

Tumors of this kind aren't common, but Kuang said that liposarcomas can be devastating and hard to treat, mainly because surgical excision, the standard treatment, often leads to uncontrolled recurrence that causes death. This new study suggests that pharmacological inhibition of Notch signaling may be effective in treating a subtype of liposarcomas in humans.

The degeneration of fat cells when Notch signaling is overactive also makes the transgenic animals created in the current study ideal for modeling another metabolic condition – lipodystrophy. In patients with lipodystrophy, the scarcity of white fat cells forces other organs, including the liver and muscles, to pick up additional body lipids. Even though they are thin, lipodystrophy patients have the hallmark signs of obesity, including high blood sugar, fatty liver and insulin resistance.

Understanding how overactive Notch signaling shrinks fats cells and turns them into cancerous cells is the emphasis of Kuang's future work.

"We hope the study could give clues on the development and treatment of metabolic diseases including obesity, type 2 diabetes, lipodystrophy and liposarcomas," Kuang said.

The paper was published Aug. 29 and is available at http://dx.doi.org/10.1084/jem.20160157.

Other Purdue researchers involved in this study include Feng Yue, Anju Karki, Castro Beatriz, Sara Wirbisky, Chao Wang, Abigail Durkes, Bennett Elzey, Ourania Andrisani, Christopher Bidwell, Jennifer Freeman and Stephen Konieczny.

Funding for the study came from the National Institutes of Health grants R01AR060652 and P30CA023168 and the Purdue University Center for Cancer Research. 

Writer: Brian Wallheimer, 765-532-0233, brian.wallheimer@gmail.com

Sources: Shihuan Kuang 765-494-8283, skuang@purdue.edu

Pengpeng Bi, 765-609-9712, pbi@purdue.edu 


ABSTRACT

Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice 

Pengpeng Bi1, Feng Yue1, Anju Karki2, Castro Beatriz1, Sara E. Wirbisky3, Chao Wang1, Abigail Durkes4, Bennett D. Elzey4,6, Ourania M. Andrisani5,6, Christopher A. Bidwell1, Jennifer L. Freeman3,6, Stephen F. Konieczny2,6, Shihuan Kuang1,6 

1 Department of Animal Sciences; Purdue University; West Lafayette, IN,

2 Department of Biological Sciences; Purdue University; West Lafayette, IN

3 School of Health Sciences; Purdue University, West Lafayette, IN

4 Department of Comparative Pathology; Purdue University; West Lafayette, IN

5 Department of Basic Medical Sciences; Purdue University; West Lafayette, IN

6 Center for Cancer Research; Purdue University; West Lafayette, IN 

Liposarcomas are the most common soft-tissue cancer. Due to the lack of animal models, the cellular origin and molecular regulation of liposarcoma remain unclear. Here we report that mice with adipocyte-specific activation of Notch signaling (Ad/N1ICD) develop liposarcoma with complete penetrance. Lineage tracing confirms the adipocyte origin of Ad/N1ICD liposarcoma. The Ad/N1ICD liposarcoma resembles human dedifferentiated liposarcoma in histological appearance, anatomical localization and gene expression signature. Before transformation, Ad/N1ICD adipocytes undergo dedifferentiation that leads to lipodystrophy and metabolic dysfunction. Although concomitant Pten deletion normalizes the glucose metabolism of Ad/N1ICD mice, it dramatically accelerates the liposarcoma prognosis and malignancy. Transcriptomes and lipidomics analyses indicate that Notch activation suppresses lipid metabolism pathways that supply ligands to Pparγ, the master regulator of adipocyte homeostasis. Accordingly, synthetic Pparγ ligand supplementation induces re-differentiation of Ad/N1ICD adipocytes and tumor cells, and prevents liposarcoma development in Ad/N1ICD mice. Importantly, the Notch target HES1 is abundantly expressed in human liposarcoma and Notch inhibition suppresses the growth of human dedifferentiated liposarcoma xenografts. Collectively, ectopic Notch activation is sufficient to induce dedifferentiation and tumorigenic transformation of mature adipocytes in mouse.


Agricultural Communications: (765) 494-8415;
Darrin Pack, dpack@purdue.edu 
Agriculture News Page


Ag News

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2015-22 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Office of Strategic Communications

Trouble with this page? Disability-related accessibility issue? Please contact News Service at purduenews@purdue.edu.