About

The Birck Nanotechnology Center (BNC) is an interdisciplinary research unit that provides infrastructure for 160 affiliated faculty members and their research groups from 36 academic units at Purdue. The 186,000 sq ft. facility includes a 25,000 sq. ft. ISO Class 3-4-5 (Class 1-10-100) nanofabrication cleanroom – the Scifres Nanofabrication Laboratory – that includes a 2,500 sq. ft. ISO Class 6 (Class 1000) pharmaceutical-grade biomolecular cleanroom.

NEW CAPABILITIES


Purdue-based consortium works on improving freeze-drying technology

February 19, 2018

"This whole industry is very much stuck in the '60s and '70s," said Drew Strongrich, a Ph.D. student in aeronautical and...

Read More about "Purdue-based consortium works on improving freeze-drying technology"

Prof. Andrei Faraon Seminar

February 27, 2018

Quantum Nano-Photonic Devices Based on Rare-Earth Ions

Bio: Dr. Andrei Faraon is an Assistant Professor of Applied Physics at California Institute of Technology. After earning a B.S. degree in physics with honors in 2004 at California Institute of Technology, he received his M.S. in Electrical Engineering and PhD in Applied Physics both from Stanford University in 2009. At Stanford, Dr. Faraon was involved with seminal experiments on quantum optics using single indium arsenide quantum dots strongly coupled to photonic crystal cavities in gallium arsenide. After earning his PhD, Dr. Faraon spent three years as a postdoctoral fellow at Hewlett Packard Laboratories. Faraon left HP in 2012 to become an Assistant Professor at Caltech, where he set up a laboratory specialized in developing nano-photonic technologies for devices that operate close to the fundamental limit of light-matter interaction. He is recipient of the NSF CAREER, ONR YIA and AFSOR YIA awards.

Abstract: Quantum light-matter interfaces that reversibly map photonic quantum states onto atomic states, are essential components in the quantum engineering toolbox with applications in quantum communication, computing, and quantumenabled sensing. I present a new platform for on-chip quantum light-matter interfaces based on nanophotonic resonators coupled to rare-earth-ions in crystals. The rare-earth ions exhibit long coherence times on optical transitions, which makes them suitable for optical quantum memories. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory, and time-bin-selective readout via enhanced optical Stark shift of the comb frequencies. Our current technology can be readily transferred to Erbium doped devices for telecom memories that can be integrated with silicon photonics. Besides ensemble memories, single rare-earth-ions coupled to nano-resonators can be used as single optically addressable quantum bits where the quantum state is mapped on their Zeeman or hyperfine levels with long coherence time. Our solid-state nano-photonic quantum light-matter interfaces can be integrated with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the nodes of quantum networks. I also discuss prospects  or integration with superconducting resonators and qubits, which can lead to devices for reversible quantum transduction of optical photons to microwave photons, thus enabling optical interconnects between superconducting quantum computers.
 

Read More

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2018 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Discovery Park

Trouble with this page? Disability-related accessibility issue? Please contact Discovery Park at dpweb@purdue.edu.