Homework H5.A.06

Ask your questions here. Or, answer questions of others here. Either way, you can learn.


DISCUSSION and HINTS
There are two critical issues involved in solving this problem.

  • One, is starting out with good free body diagrams. Recall from our lecture discussion that the Newton/Euler equations typically prefer INDIVIDUAL FBDs. Note this in the discussion of Step 1 below.
  • Second, we need to be careful on signs in establishing our kinematics relating the acceleration of the two blocks to the angular acceleration of the pulley.

Recall the following four-step plan outline in the lecture book and discussed in lecture:

Step 1: FBDs
Draw individual free body diagrams (FBDs) of the pulley and the two blocks. A single FBD of the entire system will not be useful here. Let’s say that we employ a “standard” xy-coordinate system (with x to the right and y up) for all FBDs.

Step 2: Kinetics (Newton/Euler)
You will need an Euler (moment) equation of the pulley about point C. In addition, write down the Newton equations for the y-motion for each of the two blocks. Write down all three equations using the sign convention discussed above.

Step 3: Kinematics
Here is where we need to be careful with signs. Write down the rigid body kinematics equations relating the accelerations of A and B back to the pulley center C:

aA = aC + α x rA/C – ω2rA/C
aB = aC + α x rB/C – ω2rB/C

This pair of equations will provide you with the relationships among aA, aB and α. Take note of the signs involved in these equations.

Step 4: Solve
From your equations in Steps 2 and 3, solve for the angular acceleration of the pulley and the accelerations of the two blocks.