Event Details

Abram Falk - Quantum Photonics Faculty Candidate Seminar

March 24 @ 9:30 AM - 10:30 AM - Birck 1001

Abram Falk

Postdoctoral Fellow

Institute for Molecular Engineering at Univeristy of Chicago


Engineered defects in wide band-gap semiconductors for single-spin sensing and computation

While generally considered undesirable in traditional electronic devices, semiconductor defects can confine isolated electronic spins and act as nanoscale, single-spin memory registers. Alongside research efforts focusing on nitrogen-vacancy centers in diamond, an alternative approach seeks to identify and control new spin systems in new materials, a strategy that could ultimately lead to “designer” spins with tailored properties for future quantum photonics and nanoscale sensing applications. Using infrared light at near-telecom wavelengths, I will show that spin states in silicon carbide exhibit long quantum coherence times that persist up to room temperature. I will also discuss new strategies for generating coherent spin interactions at the nanoscale using defects in inequivalent lattice sites (Fig. 1), as well as resonant electric and strain fields. Together with the availability of industrial scale crystal growth and advanced microfabrication, wide-gap semiconductors are promising platforms for room-temperature quantum technologies that merge spin degrees of freedom with electronics and photonics.

Contact Details


Purdue University, West Lafayette, IN 47907 (765) 494-4600

© 2016 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by the Office of the Executive Vice President for Research and Partnerships

If you have trouble accessing this page because of a disability, please contact the Office of the Executive Vice President for Research and Partnerships at evprp@purdue.edu.