

What is an Insect?

Insects are:

- Animals which are heterotrophs with internal digestion
- Arthropods, which have an exoskeleton with jointed legs
- 3) Insects have external mouthparts, three body regions, and six legs

https://cals.arizona.edu/pubs/garden/mg/entomology/intro.html

- 3 Insect Body Sections:
 - Head: sensory & feeding
 - Thorax: movement, legs & wings
 - Abdomen: reproduction, digestion

Aquatic Insect Evolution

- All aquatic insects have wings as adults
- Primitive "old-winged" insects: mayflies & dragonflies
- "New-winged" insects derived before metamorphosis evolved: stoneflies, true bugs
- Most recently evolved groups have new folding wings and metamorphosis: flies, beetles, caddisflies, net-winged insects

Insect Life Cycles

Incomplete metamorphosis

- get larger at each molt
- wing buds appear and increase
- adult can be aquatic or terrestrial

Complete metamorphosis

- immature and adult very different
- wings visibly absent until adult
- adult can be aquatic or terrestrial

Habitats & Challenges

- Habitat is the ecological area inhabited by a species that provides it with nutrition, shelter, and the ability to reproduce (mates, nesting sites, etc...)
- Each habitat type presents different benefits and challenges to species

Ponds and Lakes

- Often full of plants
- Low oxygen content

Streams and Rivers

- Moving water
- Higher oxygen content

Life in the River Continuum

Headwater streams

http://www.nhdfl.org/uploads/NHB%20photos/pisgah1a.jpg

Life in the River Continuum

Mid-reach streams

http://www.rollanet.org/~conorw/cwome/24_mill_creek(phelps_county_mo).jpg

Life in the River Continuum

- Lower reaches / rivers
- Large, mostly unshaded, murky water

 $http://americancruiselines.azureedge.net/images/default-source/cruise-library-complete-mississippi-river-cruise/complete_mississippi_9-min.jpg?sfvrsn=10\&size=900$

Food Webs

• Food chain: simplified depiction of energy transfer

http://www.sheppardsoftware.com/content/animals/kidscorner/images/foodchain/fullchain.gif

Aquatic Food Webs

Food Webs: multiple chains woven together

http://www.combat-fishing.com/OZarkTailwaterSimplifiedFoodWeb.JPG

Can be very complex

Adaptation

- Modification in population over time in response to increased reproductive success
- Need to move, breathe, eat, and avoid predation in a specific habitat
 - Note importance of habitat and food web in adaptation
- Driving force in evolutionary process

http://www.buglogical.com/images/catalog/category58.jpg

https://i.ytimg.com/vi/Hdy9gzz4hQE/maxresdefault.jpg

Adaptation

Example: Modifications of insect leg parts suited to various functions

Question: what is each of these legs adapted to do?

Adaptation

- Example: Modifications to mouthparts for different sources of food
- Structure of mouthparts can suggest food source

Chewing mouthparts: chewing mandibles of a mayfly

- Sickle type mandibles of a hellgrammite
- Mandibles, but modified for predation

https://leahskey.files.wordpress.com/2013/03/hellgrammite.jpg

- Piercing mouthparts of a water bug
- Modified for piercing and sucking

https://www.sccs.swarthmore.edu/users/03/cweiss/bugs/opisthogn-hemip.jpg

- Fan-type mouthparts of black fly larvae are modified for "filter feeding"
- Mouthparts very modified to allow filtering of organic matter from moving water
- Food comes to them
- What are the benefits and constraints?

Other Adaptations for Feeding

Water scorpion

https://naturallycuriouswithmaryholland.files.wordpress.com/2015/07/water-scorpion-005.jpg

Net of a caddisfly

 $\label{lem:http://lh6.ggpht.com/_X6JnoL0U4BY/S8H0RUe3N7I/AAAAAAAAYsg/UDtjjMyV53o/s1600/tmp2810_thumb3.jpg$

Dragonfly nymph

Avoiding Predators

Physical adaptations

Stonefly nymph

http://4.bp.blogspot.com/-9KhKHMpZUKg/UYaaqjj8hzl/AAAAAAAARDg/Hrd7AoG-XSU/s1600/IMG_0307.JPG

Caddisfly larva

http://ww2.kqed.org/science/wp-content/uploads/sites/35/2016/08/DL313-06-caddis-on-rock-case-CRX.jpg

Avoiding Predators

Behavioral

Mayfly nymph burrowing

http://lifeinfreshwater.net/wp-content/gallery/common-burrowing-mayfly-nymphs-ephemeridae/Burrowing-mayfly-nymph-Ephemeridae-07.jpg

Fly larvae in temporary water (no fish!)

Adaptations for Locomotion

http://www.troutnut.com/im_glossary/picture_113_small.jpg

http://whyfiles.org/wp-content/uploads/2015/07/waterstrider_shttrstk.jpg

Adaptations for Swimming

Predacious diving beetle

http://farm9.static.flickr.com/8056/ 8102110173_c59b3e6ce6.jpg Dragonfly nymph

Legs modified into paddles

Adaptations for Hanging On

Net of caddisfly

http://www.stroudcenter.org/research/projects/schuylkill/taxa/images/taxon42.jpg

Terminal claws on caddisfly

Adaptations for Breathing

- Gills
- Efficient when oxygen concentration is high
- Which habitats could these insects live in?

Damselfly nymph

http://www.sacsplash.org/sites/main/files/imagecache/medium/photos/DamselflyLarva.jpg

Mayfly nymph

Adaptations for Breathing

- Air tubes
- Do not extract oxygen from the water

Water scorpion (a true bug)

Rat-tailed maggots (true flies)

 $http://www.ispotnature.org/sites/default/files/imagecache/scaled/images/40704/40279319fd4599a2851e8b6f70befa46_0.jpg$

Adaptations for Breathing

- Carry an air bubble (scuba!)
- Adaptations: space under beetle elytra/wing covers, hydrophobic hairs

Predacious diving beetles

Water boatman

Interesting Aquatic Insects: Dragons & Damsels

Dragonfly nymph

- jet propulsion escape

Damselfly nymph

- gills
- also hunt with labial mask

Dragonfly Nymph Eating

https://www.youtube.com/watch?v=W557aSVdW_g

Mayflies

Note: one word because not a true fly

- Plant and detritus feeders
- Many types are not tolerant of pollution

Mass flights of adults is a behavioral adaptation to a short adult life cycle

Stoneflies

- Pollution intolerant
 - missing in polluted water
- Require well-oxygenated water
 - cool, shaded streams
- Require rocky substrate
 - faster moving streams
- In some species, adults emerge in late winter
 - behavioral adaptation to avoid many vertebrate predators such as birds

Figure 7 - Antennae of Corixidae adult

Why would the antennae be reduced?

True Bugs

All breathe with spiracles, not gills

Figure 8 - Foreleg of Corixidae adult

Beetles
Very diverse

True Flies

Many with aquatic larvae Very diverse Very diverse adaptations

Caddisflies

Adults look like small brown moths

Primitive (older) groups spin anchored home

Recent groups spin mobile homes

Later evolving groups spin web beside home

Plate armor!

Hellgrammite

Other Weird Aquatic Groups

Pyralid caterpillar

Alderfly

Biological Indicators

Changes in environment leads to changes in the types of aquatic insects present Why?

Therefore, the types of insects present can tell us about the state of their habitat

Example: EPT index = diversity of mayflies + stoneflies + caddisflies

Biomimicry & Humans in the Food Web

Biomimicry-Inspired Design

To Fool a Fish

- behavior (function)
- location (habitat)
- appearance

These will be determined by

- adaptations for life underwater
- life cycle
- how species moves to get food and O₂

2) Biological indicators lesson: sample aquatic insects and identify them to calculate an index of water quality based upon their tolerance of pollution