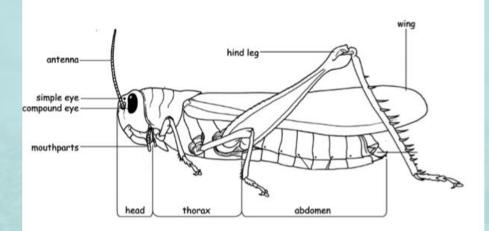

Aquatic Insects

D-BAIT Lesson

Purdue Polytechnic Institute Purdue Dept. of Entomology

Photo credit: John Obermeyer, Purdue University Entomology

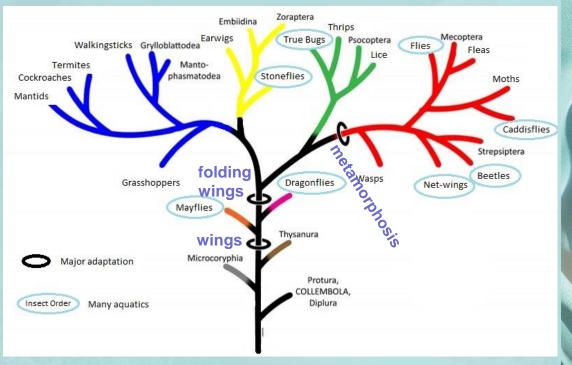
What is an Insect?



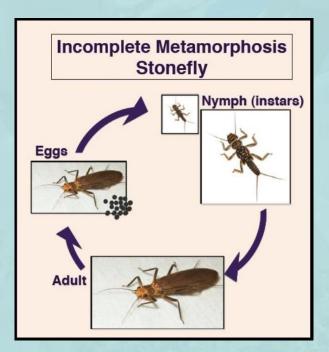
https://cals.arizona.edu/pubs/garden/mg/entomology/intro.html

- 3 Insect Body Sections:
 - Head: sensory & feeding
 - Thorax: movement, legs & wings
 - Abdomen: reproduction, digestion

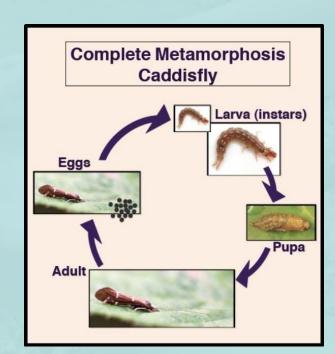
Insects are:


- 1) Animals which are heterotrophs with internal digestion
- 2) Arthropods, which have an exoskeleton with jointed legs
- 3) Insects have external mouthparts, three body regions, and six legs

Aquatic Insect Evolution


- All aquatic insects have wings as adults
- Primitive "old-winged" insects: mayflies & dragonflies
- "New-winged" insects derived before metamorphosis evolved: stoneflies, true bugs
- Most recently evolved groups have new folding wings and metamorphosis: flies, beetles, caddisflies, net-winged insects

Insect Life Cycles


Incomplete metamorphosis

- get larger at each molt
- wing buds appear and increase
- adult can be aquatic or terrestrial

Complete metamorphosis

- immature and adult very different
- wings visibly absent until adult
- adult can be aquatic or terrestrial

Habitats & Challenges

- Habitat is the ecological area inhabited by a species that provides it with nutrition, shelter, and the ability to reproduce (mates, nesting sites, etc...)
- Each habitat type presents different benefits and challenges to species

Ponds and Lakes

- Often full of plants
- Low oxygen content

Streams and Rivers

- Moving water
- Higher oxygen content

Life in the River Continuum

Headwater streams

http://www.nhdfl.org/uploads/NHB%20photos/pisgah1a.jpg

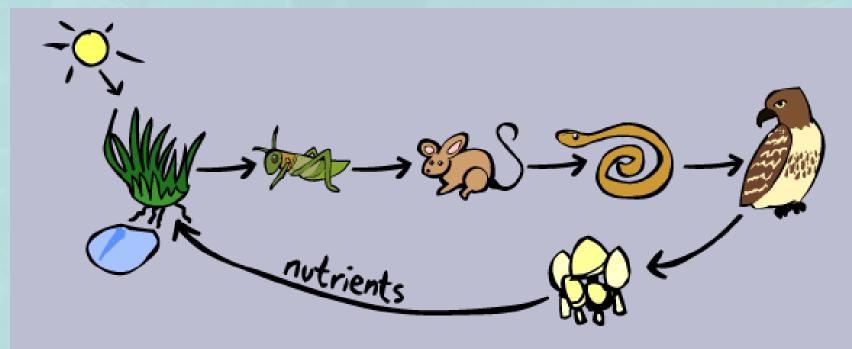
Life in the River Continuum

Mid-reach streams

http://www.rollanet.org/~conorw/cwome/24_mill_creek(phelps_county_mo).jpg

Life in the River Continuum

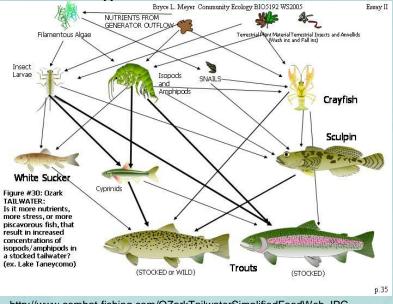
- Lower reaches / rivers
- Large, mostly unshaded, murky water



http://americancruiselines.azureedge.net/images/default-source/cruise-library-complete-mississippi-river-cruise/complete_mississippi_9-min.jpg?sfvrsn=10&size=900

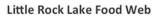
Food Webs

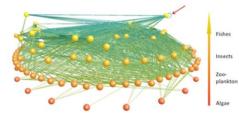
Food chain: simplified depiction of energy transfer


•

http://www.sheppardsoftware.com/content/animals/kidscorner/images/foodchain/fullchain.gif

Aquatic Food Webs


Food Webs: multiple chains woven together



http://www.combat-fishing.com/OZarkTailwaterSimplifiedFoodWeb.JPG

Can be very complex

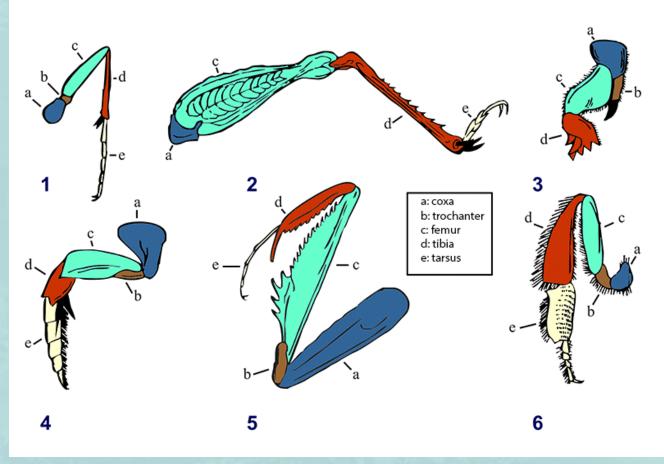
•

92 species, 997 links, 11 links/species

Adaptation

- Modification in population over time in response to increased reproductive success
- Need to move, breathe, eat, and avoid predation in a specific habitat
 - Note importance of habitat and food web in adaptation
- Driving force in evolutionary process

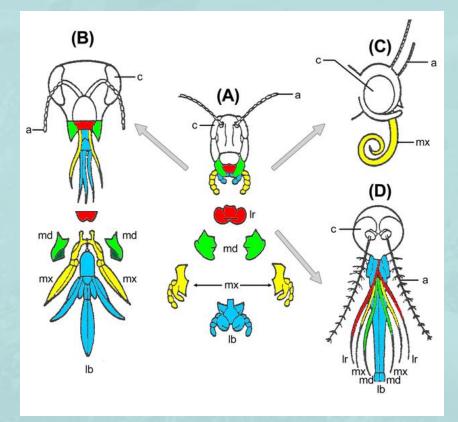
http://www.buglogical.com/images/catalog/category58.jpg


https://i.ytimg.com/vi/Hdy9gzz4hQE/maxresdefault.jpg

http://media.mnn.com/assets/images/2014/11/ghost-mantis.jpg

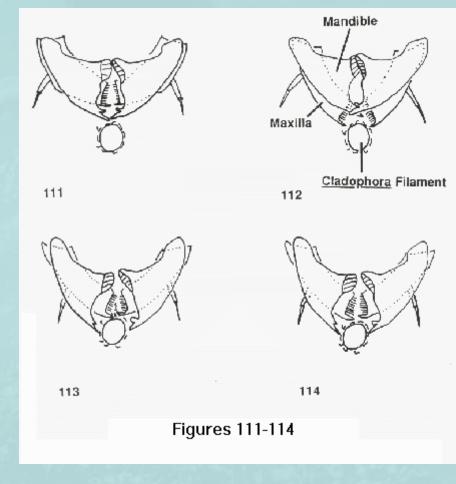
Adaptation

Example: Modifications of insect leg parts suited to various functions


Question: what is each of these legs adapted to do?

http://bio.vtn2.com/bio-home/harvey/lect/images/Insect_legs800.png

Adaptation


- Example: Modifications to mouthparts for different sources of food
- Structure of mouthparts can suggest food source

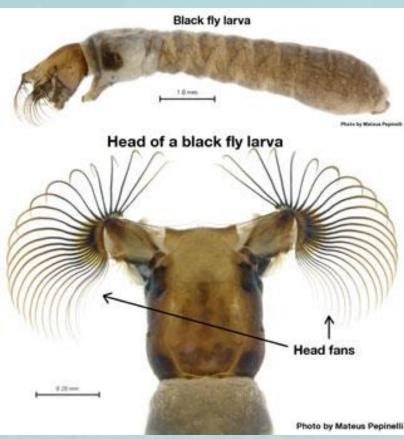
https://upload.wikimedia.org/wikipedia/commons/6/6c/Evolution_insect_mouthparts_coloured.png

Chewing mouthparts: chewing mandibles of a mayfly

•

http://w3.marietta.edu/~mcshaffd/phd/f111-114.gif

- Sickle type mandibles of a hellgrammite
- Mandibles, but modified for predation


https://leahskey.files.wordpress.com/2013/03/hellgrammite.jpg

- Piercing mouthparts of a water bug
- Modified for piercing and sucking

https://www.sccs.swarthmore.edu/users/03/cweiss/bugs/opisthogn-hemip.jpg

- Fan-type mouthparts of black fly larvae are modified for "filter feeding"
- Mouthparts very modified to allow filtering of organic matter from moving water
- Food comes to them
- What are the benefits and constraints?

http://www.sciencenorth.ca/uploadedImages/Science_North_New/Cool_Science/Blog_Posts/larvae-web.jpg

Other Adaptations for Feeding

Water scorpion

https://naturallycuriouswithmaryholland.files.wordpress.com/ 2015/07/water-scorpion-005.jpg

Net of a caddisfly

http://lh6.ggpht.com/_X6JnoL0U4BY/S8H0RUe3N7I/AAAAAAAAYsg/ UDtjjMyV53o/s1600/tmp2810_thumb3.jpg

Dragonfly nymph

a alamy stock photo

Avoiding Predators

Physical adaptations

Stonefly nymph

http://4.bp.blogspot.com/-9KhKHMpZUKg/UYaaqjj8hzl/ AAAAAAAADg/Hrd7AoG-XSU/s1600/IMG_0307.JPG

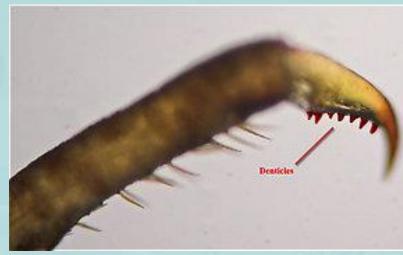
Caddisfly larva

http://ww2.kqed.org/science/wp-content/uploads/sites/35/2016/08/DL313-06-caddis-on-rock-case-CRX.jpg

Avoiding Predators

Behavioral

Mayfly nymph burrowing


http://lifeinfreshwater.net/wp-content/gallery/common-burrowing-mayfly-nymphs-ephemeridae/Burrowing-mayfly-nymph-Ephemeridae-07.jpg

Fly larvae in temporary water (no fish!)

Adaptations for Locomotion

http://www.troutnut.com/im_glossary/picture_113_small.jpg

http://whyfiles.org/wp-content/uploads/2015/07/waterstrider_shttrstk.jpg

Adaptations for Swimming

Predacious diving beetle

http://farm9.static.flickr.com/8056/ 8102110173_c59b3e6ce6.jpg Dragonfly nymph

https://katatrepsis.files.wordpress.com/2012/10/ dragonfly-larva-locomotion.png

Legs modified into paddles

"Jet propulsion"

Adaptations for Hanging On

Net of caddisfly

http://www.stroudcenter.org/research/projects/schuylkill/taxa/images/taxon42.jpg

Terminal claws on caddisfly

Adaptations for Breathing

- Gills
- Efficient when oxygen concentration is high
- Which habitats could these insects live in?

Damselfly nymph

http://www.sacsplash.org/sites/main/files/imagecache/medium/photos/DamselflyLarva.jpg

Mayfly nymph

https://scrubmuncher.files.wordpress.com/2011/08/merge.jpg

Adaptations for Breathing

Air tubes

Do not extract oxygen from the water

Water scorpion (a true bug)

Rat-tailed maggots (true flies)

http://www.ispotnature.org/sites/default/files/imagecache/scaled/images/40704/40279319fd4599a2851e8b6f70befa46_0.jpg

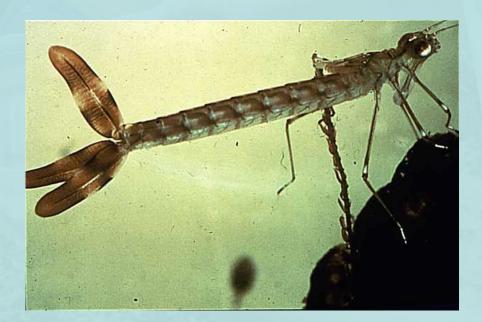
Adaptations for Breathing

- Carry an air bubble (scuba!)
- Adaptations: space under beetle elytra/wing covers, hydrophobic hairs

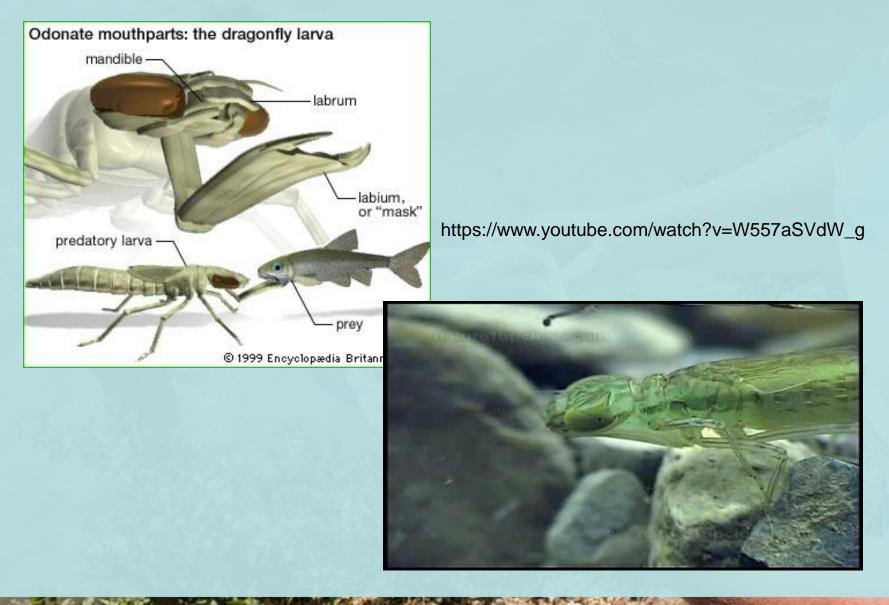
Predacious diving beetles

Water boatman

http://www.microcosmos.nl/pics/cxsiabd01gr.jpg


Interesting Aquatic Insects: Dragons & Damsels

Dragonfly nymph - jet propulsion escape



Damselfly nymph

- gills
- also hunt with labial mask

Dragonfly Nymph Eating

Mayflies

Note: one word because not a true fly

- Plant and detritus feeders
- Many types are not tolerant of pollution
- Mass flights of adults is a behavioral adaptation to a short adult life cycle

Stoneflies

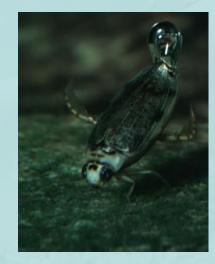
- Pollution intolerant
 - missing in polluted water
- Require well-oxygenated water
 - cool, shaded streams
- Require rocky substrate
 - faster moving streams
- In some species, adults emerge in late winter
 - behavioral adaptation to avoid many vertebrate predators such as birds

Figure 7 - Antennae of Corixidae adult

Why would the antennae be reduced?

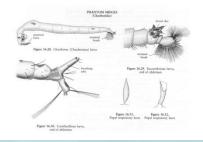
True Bugs

All breathe with spiracles, not gills


Figure 8 - Foreleg of Corixidae adult

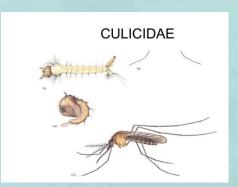
James L. Castner, U. Fla. Ent. Dep.

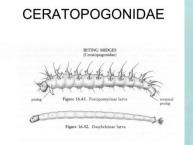
Beetles Very diverse

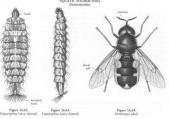


CHAOBORIDAE

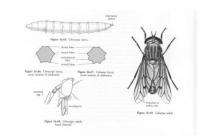
TIPULIDAE ADULT/LARVA


True Flies


Many with aquatic larvae Very diverse Very diverse adaptations


Figure 16.81. Eristalis la end of abdomen

CHIRONOMIDAE



STRATIOMYIDAE

TABANIDAE

BLEPHARICERIDAE

WINGED MIDGE

Figure 16.21, Ribiocenhale Jaro

Caddisflies

Adults look like small brown moths

Primitive (older) groups spin anchored home

Recent groups spin mobile homes

Later evolving groups spin web beside home

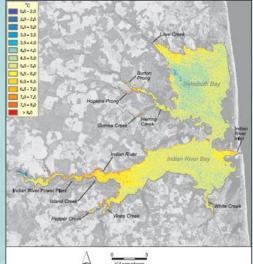
Plate armor !

Hellgrammite

An aquatic wasp

Alderfly

Pyralid caterpillar


Biological Indicators

Changes in environment leads to changes in the types of aquatic insects present Why?

Therefore, the types of insects present can tell us about the state of their habitat

Example: EPT index = diversity of mayflies + stoneflies + caddisflies

Biomimicry & Humans in the Food Web

Biomimicry-Inspired Design

To Fool a Fish

- behavior (function)
- location (habitat)
- appearance

These will be determined by

- adaptations for life underwater
- life cycle
- how species moves to get food and O₂

Using Aquatic Entomology Knowledge

1) D-BAIT lesson: design a 3-d printed fishing lure that uses biomimicry to function as an aquatic insect that fish prey upon

2) Biological indicators lesson: sample aquatic insects and identify them to calculate an index of water quality based upon their tolerance of pollution