Tutorial on task dynamics and articulatory phonology

Elliot Saltzman

Boston University, Boston, MA;
Haskins Laboratories, New Haven CT;

Contact Information: (esaltz@bu.edu)

Acknowledgements: This work was supported by NIH grant R21-DC-009466 and NSF grant IIS-0703782;

Colleagues

Martha Tyrone
Long Island University, Brooklyn NY
Haskins Laboratories, New Haven CT

Louis Goldstein
University of Southern California, Los Angeles CA
Haskins Laboratories, New Haven CT

Hosung Nam
Haskins Laboratories, New Haven CT

Gaurav Mathur
Gallaudet University, Washington DC
Overview of Presentation

- **General Introduction:**
 - Articulatory phonology: linguistics
 - Task-dynamics: movement science

- **Review:** Task-dynamic model of sensorimotor coordination

- **Review:** Articulatory phonology and the task-dynamic model of speech production
 - Gestural (spoken) and prosodic aspects

- **Progress & challenges:** Toward an articulatory phonology and task-dynamic model of signing

Part I. Articulatory Phonology: Major Hypotheses
Catherine Browman and Louis Goldstein

- Speech can be described in a way that captures its phonological and physical properties in a unitary structure.

- Act of speaking can be decomposed into atomic units, or vocal tract gestures.
 - Units of **information:** Linguistically contrastive primitives of speech production
 - Units of **action:** Control structures that govern the creation and release of constrictions by distinct vocal tract organs (e.g., lips, tongue tip, tongue body)
 - **Coordinated** into larger ‘molecular’ lexical structures
Task Dynamics: Major Hypotheses

- **Domain independence**
 - The principles underlying skilled actions of the limbs, head, and torso are the *same* as those involved in the control and coordination of the speech articulators

- **Unitary treatment of underlying invariance of representation and surface variability of performance**
 - *Motor equivalence*: multiple articulator trajectories accomplish single goal
 - *Underlying invariance*: dynamics (force fields)
 - *Surface variability*: contextually varying kinematics (motion patterns) that emerge from the dynamics

Part II. Task Dynamics—4 Issues

Main Question: How can we build a “simple” (*few* degrees-of-freedom) *special purpose device* out of a *many* degree-of-freedom musculoskeletal system?

- **1st:** Define the appropriate **End-Effector** for the task
 - **Definition:** A task’s *end-effector* is defined in relation to the body part/parts whose motion most directly defines the task’s *special purpose device*
 - Ex) hand in a reaching/punching task
 - Ex) forehead for heading a soccer ball
 - Ex) both hands for clapping/applause
Task Dynamics: 4 Issues (cont.)

- 2nd: Define the two \textit{sets} of variables (coordinate spaces) that are needed to control the intended action
 - \textit{Dimensionalities} of these spaces
- Two important coordinate spaces are \textit{task} space and \textit{articulator/musculoskeletal} space
 - \textit{Task} space: low dimensional; where the end-effector “lives”
 - Example: Reaching—3 translational degrees of freedom
 - Example: Wine glass transport—3 translational and 3 rotational degrees of freedom
 - \textit{Articulator/musculoskeletal} space: higher dimensional; where the actuators “live”
 - Examples: joint angles, segment orientation angles

Task Dynamics: 4 Issues (cont.)

- 3rd: Define the appropriate \textit{kind} of task-specific \textit{dynamics} for the end-effector’s degrees-of-freedom in the task space
 - Ex) \textit{Point attractor} dynamics for \textit{discrete} targeting/positioning tasks
 - \textit{Reaching/punching}: hand moves to contact target
 - \textit{Heading soccer ball}: forehead moves to hit incoming ball
 - Ex) \textit{Limit cycle} dynamics for \textit{sustained} rhythmic tasks
 - \textit{Clapping/applause}: both hands move rhythmically and symmetrically relative to one another
 - \textit{Polishing/scratching}: hand/finger moves rhythmically on a surface
Task Dynamics: 4 Issues (cont.)

- **4th:** Convert the task-specific accelerations on the end-effector into a pattern of corresponding joint accelerations in the articulator degrees-of-freedom
 - Harness the articulators in order to produce task-specific patterns of coordinated motion
 - need to know the kinematic/geometric relationships between the articulator and end-effector coordinate systems
 - These relationships are bidirectional, and include both:
 - Forward Kinematics: perceptual input transformed into task-relevant form
 - Ex) Joint angles are transformed into position and orientation of hand
 - Inverse Kinematics: Desired end-effector motion is transformed into required articulator motion
 - Ex) Desired hand acceleration converted into required task-specific, pattern of joint angular accelerations

Schematic of Task-Dynamic Model
Part III
Speech Production: An Articulatory Phonology and Task-Dynamic Model
Speech Gestures

- **Definition**: Equivalence classes of goal-directed actions by different sets of articulators in the vocal tract
 - examples:
 - bilabial gestures /p/, /b/, /m/—Upper lip, lower lip, and jaw work together to close and open the lips.
 - vocalic gestures /a/, /o/—Tongue body and jaw work together to position and shape the tongue dorsum (surface) for the vowel.

Articulatory Phonology (Browman & Goldstein)
- Gestures are the basic functional units of speech ("atoms"); syllables/words are "molecules"

Components of the Task-Dynamic Model

- **There are 2 main components in the task dynamic model of speech production**
 - Constriction formation/release component
 - shapes articulator trajectories given gestural timing information as input
 - Uses *tract-variable (constriction)* and *model articulator* coordinates.
 - Planning component: provides a dynamics of gestural timing
 - Uses *activation* and *planning oscillator ("clock")* coordinates.
Task-Dynamics: Constriction (Tract-variable) Task Space & Model Articulator Space Coordinates

<table>
<thead>
<tr>
<th>Tract variables</th>
<th>Model articulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP lip protrusion</td>
<td>upper & lower lips</td>
</tr>
<tr>
<td>LA lip aperture</td>
<td>upper & lower lips, jaw</td>
</tr>
<tr>
<td>TDCL tongue dorsum constrict location</td>
<td>tongue body, jaw</td>
</tr>
<tr>
<td>TDCD tongue dorsum constrict degree</td>
<td>tongue body, jaw</td>
</tr>
<tr>
<td>LTH lower tooth height</td>
<td>jaw</td>
</tr>
<tr>
<td>TITCL tongue tip constrict location</td>
<td>tongue tip, body, jaw</td>
</tr>
<tr>
<td>TITCD tongue tip constrict degree</td>
<td>tongue tip, body, jaw</td>
</tr>
<tr>
<td>TITCO tongue tip constrict orientation</td>
<td>tongue tip, body, jaw</td>
</tr>
<tr>
<td>VEL velic aperture</td>
<td>velum</td>
</tr>
<tr>
<td>GLO glottal aperture</td>
<td>glottalwidth</td>
</tr>
<tr>
<td>P \text{S} subglottal pressure</td>
<td>total lung force</td>
</tr>
<tr>
<td>P \text{T} transglottal pressure</td>
<td>supralaryngeal vocal tract volume</td>
</tr>
<tr>
<td>\Delta \text{Fov} delta virtual fundamental frequency</td>
<td>vocal fold tension, total lung force</td>
</tr>
</tbody>
</table>

Self-organized motor equivalence
- **Task-space:** different initial conditions result in different paths to attain a given constriction target
- **Articulator-space:** if an articulator is perturbed along the way, the others instantaneously and automatically compensate
Planning Component: Gestural Activation

- A given gesture’s constriction-dynamics influence vocal tract activity for a discrete interval of time
 - Activation interval
 - Activations wax and wane gradually at edges.
 - A gesture’s strength is defined by its activation level (range: 0-1)

- In a given utterance, inter-gestural timing is determined by how the activation waveshapes of the component gestures evolve over time
 - Activation timing is controlled by a “clock” defined by a set of planning oscillators

Gestural Scores

- The activation trajectories for the set of gestures in a given utterance is described by a gestural score
 - Rows = task-space (constriction) variables
 - Each row: activation vs. time waveforms for the associated task-space (constriction) variable

Gestural Score

TISLR_Purdue_Oct’10
Prosodic Effects of Phrasal Boundaries:

- Phrasal boundary effects on articulation include:
 - lengthening of gestural durations
 - decreased overlap (coarticulation) between adjacent gestures
 - spatially larger gestures in phrase-initial positions

- Boundary effects appear to be graded
 - stronger boundaries induce greater lengthening

- Question: How can we account for the variations of gestural timing associated with prosodic context?
How is this Prosodic Action Effected?— Central Clock Slowing

- Hypothesis: Prosodic effects are induced by time slowing at the gestural control level.
 - slowing the timecourse of gestural activation
 - influence the expression of all constriction gestures spanning a phrasal boundary
- Slowing the central clock has the desired effects on both within-gesture and between-gesture timing.
 - gestural lengthening, spatial strengthening, reduced intergestural overlap

Juncture as Prosodic (π)-Gesture

- Two constriction gestures overlap at a phrase boundary
- π-gesture straddles the phrase boundary.
- Constriction gestures are slowed during the activation interval of the π-gesture
 - degree of slowing is proportional to π-gesture’s activation level
 - activation level determined by boundary strength

Part IV
Toward an Articulatory Phonology and Task-Dynamic Model of Signing

Sign Modeling: Extrapolations Consistent with Current Speech Model

- Signs as multidimensional lexical objects
 - Sublexical dimensions defined by task spaces
 - Location, orientation, handshape, pathshape (movement)
- Hierarchy of functional units
 - Gestures: Task-space “atomic” units of action (contrastive phonological primitives)
 - Signs: “molecules” of gestures
- Gestural scores
 - Gestural activation trajectories for each task-space in a given utterance
- Phrasal boundary-induced lengthening
 - π-gestures
Sign Modeling: Properties Not Present in Current Model

- **Articulatory phonology:**
 - New types of primitive ‘objects’ (limit cycles)
 - Ex) rhythmic hand/finger motion in ASL: TREE
 - Multiphase units more complex than constriction formation (gap closing) → release (gap opening)
 - Ex) motion to target region → handshape change → motion away from target (ASL: STUBBORN)

- **Task dynamics**
 - Motion in 3-dimensional space, not 2-D midsagittal plane
 - Target complexity
 - Areas on body surface(s), not points; Volumes in space, not points
 - Coordinate system axes (relative attractive strengths) “embedded” in target areas/volumes
 - Task-space distances between surfaces and points or other surfaces (not point-to-point)
 - Body as complex, moving spatial array of obstacles (repellers) and time-varying targets (attractors)

Planned Task-Dynamic Model of Signing

```
Intergestural Coupling Graph --> Lexicon

Prosody: Oscillator Hierarchy + Modulation Gestures

Gestural Planning Oscillator variables --> Activation variables (Gestural Score)

Model Joint Angle Variables

PLANNING: Inter-GESTURAL Coordination

SIGN FORMATION: Inter-ARTICULATOR Coordination
```

ENVISION

TISLR_Purdue_Oct'10
Thank you

Slowing activation timecourse

Equation for time scaling/stretching/slowing:

\[\tau(t) \overset{\text{d} \tau}{= \text{d} t} \tau = \left(1 - \alpha \cdot a_{\pi} \right) \]

Where \(\tau \) is scaled time and \(t \) is unscaled time & gestural activations are a function of scaled time.

Byrd & Saltzman 2003