Emergence of Depiction in Acquisition of American Sign Language

Clifton Langdon
Department of Linguistics, Gallaudet University

Abstract

This poster presents a small sample of recent exploratory work on the feasibility of applying Dudis (2007) towards the emergence of depiction in child acquisition of ASL. The phenomena subsumed by depiction are described, the benefits of viewing depicting utterances by children as related in terms of the cognitive components recruited to produce these utterances, and a hypothesis from the Real-Space framework is tested.

Depiction Introduced

Depiction is the iconic representation of events, settings, and objects, but distinct from the iconicity exhibited by nouns and indicating verbs (Dudis 2007). Various classifiers constructions, constructed action & dialogue, tokens without a |subject| exist within a third mental space, the blend. Dudis demonstrates that it is possible to describe depiction nouns and indicating verbs (Dudis 2007). Various classifiers constructions, constructed action & dialogue, tokens without a |subject| can be viewed as more complex than those with “handling classifiers.” This is because partitioning is utilized to represent a distinct visible object that is mapped onto the body part, i.e. a hand, face, etc. no longer “belongs” to the depicted subject of conception.

By viewing these phenomena as related and describing this relationship with the Real-Space blending framework, we can describe, for example, handling classifier predicates, constructed action, and constructed dialogue as being similar to each other in terms of the “source material” (body space, etc.) and cognitive abilities recruited. That is, there is no partitioning (Dudis 2007) of the body parts to represent multiple visible elements. The tone, face, and arms are all considered to be as belonging to the subject. In short, the same machinery is recruited to produce them. By viewing handling classifier predicates, constructed action, and constructed dialogue as belonging to the similar types of depiction (see code A & B in the flowchart) we may present us with cleaner patterns illustrating the course of acquisition for depiction. This can be achieved using Dudis’ approach to analyzing what is required to produce these types of depiction. For example, instances of depiction involving both the depicted subject of conception (aka |subject|) and “entity classifiers” can be viewed as more complex than those with “handling classifiers.” This is because partitioning is utilized to represent a distinct visible object that is mapped onto the body part, i.e. a hand, face, etc. no longer “belongs” to the depicted subject of conception. With this approach, we are presented with specific predictions that can be tested. For example, assuming that simpler constructions appear earlier than complex constructions we can predict that code B would appear prior to code D.

Methodology

This poster draws from fifteen video recorded sessions of naturalistic play with JIL, a deaf child with deaf parents whose primary language is ASL, from the ages of 1;07 to 1:10 and 2:07-2:09. Each session typically lasts around 45 minutes and were transcribed for instances of depiction.

Below are three sets of screen captures illustrating the development of partitioning, which is one of several sequences that have been observed in the of emergence of depiction in child acquisition of ASL.

Discussion

The three examples from JIL illustrates how early depiction appears (at least by 1;07) and her strategies as she begins to integrate depiction more tightly into her utterances (i.e. sequentially), then finally an adult-like utterance by the age of 2:09. This set of examples contains observations similar to that of Anderson & Reilly (1998) where children produce nonmanual signs with the incorrect scope. Additionally, Schick’s (2006) observations of a preference for handling classifier predicates at early ages were also confirmed within the dataset transcribed for this project.

Conclusion

When viewed with the lens of Real-Space framework and when considering the specific cognitive abilities identified by Dudis, we can see a clearer course of development for depiction. The sequence of JIL’s utterances suggests JIL comes to produce increasingly complex forms of depiction, and the errors can be accounted for if we include the consideration of the cognitive abilities that children must utilize in order to produce certain types of depiction.

Future work

New work focuses on effects of interaction between depiction and several other components, namely, discourse cohesion (cf. Slabin 2006), nonmanual errors (cf. Anderson & Reilly), and overgeneralization of depiction. Preliminary findings suggest that as the child comes to integrate additional elements into their signing (e.g. non-manuals, new types of depiction, discourse cohesion, etc.) errors appear. In other words, the protracted acquisition timeline for classifier constructions is the result of gradual integration of multiple resources.

References


Acknowledgements

Funding for this research is provided by the National Science Foundation, Grant Number SBE-0541933 to the Visual Language and Visual Learning, Science of Learning Center (VL2).

Inquiries should be directed to Clifton.Langdon@gallaudet.edu.

Inquiries should be directed to Paul.Dudis@gallaudet.edu.