The Causes and Consequences of Purdue Grade Inflation

Purdue was (and is) unique among peer universities for our low average GPA.

However, average grades have increased dramatically, starting in the 2009 academic year.

Figure 1: Purdue Average Undergraduate Grade Index, 2000-2019

Table 1: Average GPA at Peer Institutions

Institution (year)	Average GPA	Institution (year)	Average GPA
Duke (2014)	3.51	Penn State (2014)	3.12
Florida (2014)	3.35	Princeton (2014)	3.39
Georgia Tech (2014)	3.25	Texas (2014)	3.22
Harvard (2015)	3.65	Texas A\&M (2013)	3.08
Illinois (2015)	3.25	UC Berkeley (2014)	3.29
Indiana (2013)	3.19	UCLA (2013)	3.27
Maryland (2014)	3.17	Virginia (2013)	3.32
Michigan (2015)	3.37	Virginia Tech (2015)	3.15
MIT (2015)	3.39	Washington (2015)	3.28
Ohio State (2015)	3.17	Wisconsin (2014)	3.25

Krannert School of Management RESEARCH CENTER IN ECONOMICS

- $1 / 3^{\text {rd }}$ better-prepared students
- $1 / 3^{\text {rd }}$ course and instructor selection
- $1 / 3^{\text {rd }}$ unexplained grade inflation
(better teaching, better facilities, better academic support, and easier grading)
- 4 colleges are responsible for nearly all the grade inflation:

Engineering, Liberal Arts, Polytechnic Institute, and Science (the reasons are different)

- Grade inflation increased graduation rates by about 2 percentage points
- Grade inflation helps students persist in higher-paying majors
- Grade inflation has not decrease starting salary for graduates (yet)

```
2%34*)
```


845

- 9-Year Time Period: Fall 2008 - Spring 2017
- All undergraduate student grades earned at the West Lafayette campus

- 絡

- Fixed-effects regression decomposition method
- Estimate how much grade inflation is caused by specific factors
- Some grade inflation is left unexplained

0.25

0.25

0.25

0.25

0.25

eppepuepelue

0.25

0.25

- Higher grade inflation, more of it caused by better students (47\%)
- 41% of lower-division grade inflation is unexplained
- Only 12% is due to course selection, primarily across subjects

- 50% of the grade inflation is caused by course selection, primarily within subjects
- Better advising, helping students be successful
- More flexibility and more choice in plans of study (better fit leads to better outcomes)
- More student hunting for courses that grade easy (\& technology)

- Engineering - unexplained
- Liberal Arts - unexplained
- Polytechnic Institute - unexplained, high-grade instructors
- Science - better students, course selection across subjects

- Agriculture - better students, course selection within subjects
- Management - better students, high-grade instructors

- Education
- Health \& Human Science

- Undergraduate students entering between fall 2008 and fall 2012 (5 cohorts)
- All courses they take between 2008 and 2017

- We deflate grades: given the student characteristics, we compute the grade they would have earned in each course if it had been taken in fall 2008.
- Using credit-hour weights, we compute the student's Real GPA:
the GPA he or she is predicted to have earned had he or she taken all courses in fall 2008
- Net Grade Inflation is the difference between the Nominal GPA and the Real GPA

Net Grade Inflation for Students

Net Grade Inflation for Courses

Net Grade Inflation for Courses Weighted by Enrollment

	(1) 4-year rate	(2) 5-year rate	(3) 6-year rate
Real GPA	$0.323^{* * *}$	$0.349^{* * *}$	$0.343^{* * *}$
	(0.0036)	(0.0032)	(0.0032)
Net Grade Inflation	$\mathbf{0 . 0 8 6 ^ { * * }}$	$\mathbf{0 . 1 9 \mathbf { n } ^ { * * * }}$	$\mathbf{0 . 2 1 \mathbf { o } ^ { * * * }}$
	$\mathbf{(0 . 0 3 4 4)}$	$\mathbf{(0 . 0 2 9 7)}$	$\mathbf{(0 . 0 2 8 2)}$
Constant	$-0.431^{* * *}$	$-0.294^{* * *}$	$-0.246^{* * *}$
	(0.0108)	(0.0103)	(0.0102)
N	23,547	23,547	23,547
R^{2}	0.229	0.312	0.324
Mean Grad. Rate	0.527	0.745	0.775

Notes: this table reports the effect of Net Grade Inflation on 4-, 5-, and 6-year graduation rates. The estimates suggest that grade inflation has a positive effect on graduation rates. Standard errors in parentheses: ${ }^{*} p<0.1,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

PURDUE

	(1)	(2)		
4-year rate	5-year rate	(3) 6-year rate	(4) Switch college	
Real GPA (lower)	$0.226^{* * *}$	$0.219^{* * *}$	$0.208^{* * *}$	$-0.073^{* * *}$
	(0.0039)	(0.0040)	(0.0041)	(0.0065)
Net Grade Inflation	$\mathbf{0 . 2 5 \mathbf { B } ^ { * * * }}$	$\mathbf{0 . 3 1 1 ^ { * * * }}$	$\mathbf{0 . 3 1 \mathbf { 1 } ^ { * * * }}$	$\mathbf{- 0 . 1 2 \mathbf { 6 } ^ { * * * }}$
(lower)	$\mathbf{(0 . 0 2 3 1)}$	$\mathbf{(0 . 0 1 9 8)}$	$\mathbf{(0 . 0 1 9 2)}$	$\mathbf{(0 . 0 2 3 9)}$
Constant	$-0.135^{* * *}$	$0.100^{* * *}$	$0.162^{* * *}$	$0.502^{* * *}$
	(0.0115)	(0.0125)	(0.0128)	(0.0207)
N	20,579	20,579	20,579	16,328
R^{2}	0.166	0.196	0.194	0.341
Mean dep. var.	0.537	0.755	0.784	0.271

Notes: this table reports the effect of Net Grade Inflation in only 100- and 200-level courses on $4-5-$, and 6 -year graduation rates. The estimates suggest that grade inflation has a positive effect on graduation rates and a negative effect on switching out of the college to which the student was originally admitted. Standard errors in parentheses: *p $<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

	(1)	(2)	(3)	(4)
	Naïve	Full controls	Non-switchers	Switchers
Real GPA	0.061***	0.095**	0.097**	0.098***
	(0.011)	(0.010)	(0.012)	(0.022)
Net Grade Inflation	0.687***	0.202**	0.229**	0.044
	(0.075)	(0.083)	(0.083)	(0.163)
Constant	10.589***	12.575***	$13.014^{* * *}$	12.496***
	(0.037)	(1.614)	(2.108)	(2.820)
N	6,999	6,999	5,278	1,669
R^{2}	0.016	0.493	0.499	0.525
Mean Salary	\$52,816	\$52,816	\$54,052	\$49,237

Notes: this table reports the effect of Net Grade Inflation on the log of the student's starting salary after graduation. The estimates suggest that grade inflation has a positive effect on salary, with effects concentrated on students who graduate from the same college to which they were originally admitted. Standard errors in parentheses: * p < 0.1, ** p < 0.05, *** p < 0.01

$\%$（䊅）䏝鈢

－Grade inflation increased graduation rates by about 2 percentage points
－Grade inflation helps students persist in higher－paying majors and has not hurt starting salary（yet）

－What caused the large unexplained grade inflation in Engineering，Liberal Arts，and the Polytechnic Institute？
－How has increased student choice contributed to grade inflation？
－How did the introduction of the core curriculum contribute to grade inflation？
－Has competition for students across majors lead to relaxed grading standards？

