
Updated Fall 2019

Page 1 of 5

E N G R 1 3 3 P r o g r a m m i n g S t a n d a r d s

Programming standards are guidelines that one uses to write well-documented code that is understandable by others
and to develop good programming habits. All MATLAB code submissions in this course must follow the standards in
this document.

Why Follow Programming Standards?

• Make code easier to understand. Your code must be readable by team members, graders, instructors,
and eventually co-workers and supervisors. You will read code written by others. Well-written code
makes its purpose and logic clear and is easily used by others.

• Help minimize errors. Readable, easy-to-follow code helps minimize errors and allows for easier
debugging when errors do occur.

• Develop good habits. Learning these standards now will help you be an efficient programmer and help
you resist poor programming habits in the future.

Note: Course materials will attempt to abide by these standards as closely as possible to serve as an example.
However, some course materials may exclude headers and comments to save space; this is not an option for your
assignments.

Use the Appropriate Code Template

If provided, you must use an ENGR 133 template for MATLAB files submitted with an assignment. There are two
template types, one for script files and one for function files. Use the correct template for the type of MATLAB code
you are developing. Some problem sets have problem-specific templates; use those templates when provided.
Otherwise, you can download a generic template from Blackboard.

Each template has a header block that starts on the first line of the code for scripts or on the second line for functions.
You must complete the header block for each m-file that you submit for a grade.

Complete the Header

The header needs to contain relevant problem, program, and author information to help others understand what the
program does, how to use it, and who wrote it. All m-files submitted need a complete header. All headers require a
program description and author information. Function m-files also require help lines to explain the function call and its
inputs and outputs.

The header information is what appears in the MATLAB Command Window when a user calls MATLAB’s help
functionality to learn about the script or function. The header should provide the user with all information necessary
to use the file.

Program Description – all scripts and functions

The program description briefly describes the purpose of the program. Anyone looking at your code, including your
grader, should be able to use your program description to understand the purpose of the code.

Author Information – all scripts and functions

All m-files need author information. Complete the appropriate lines of the header with the following information:

• Assignment: State the assignment number and the problem number (e.g., PS02, Problem 2).

• Author: Add your name and your Purdue email address with your official login (no aliases).

• Team ID: Add your section and team number. For early assignments (prior to being assigned to a team), list
only your section number.

Updated Fall 2019

Page 2 of 5

• Paired Partner: If the code is the result of a paired assignment, list your paired partner’s name and official
Purdue email address.

• Contributor: If you received help from another student on the code or if you helped another student on their
code, then list that student’s name and official Purdue email as a contributor. Add additional lines if you had
more than one contributor. Read the course Academic Integrity document for more information about
contributors.

• Place an X between the brackets to indicate the type of help you received from your contributor. You can
select as many as apply. Leave this as-is if you did not have a contributor.

Function Call – functions only

The function call line is a help line that demonstrates how to call the function.

Input Argument and Output Arguments – functions only

Functions can have input arguments, output arguments, both, or neither. Define each input argument and output
argument with a concise description that includes units as appropriate. If the function does not have input or output
arguments, then indicate ‘none’ in the appropriate location in the header.

This is particularly important for inputs because there is no place to describe them in the body of the code.

Assign Variables

• Use descriptive variable names that make the variable’s purpose clear without having to look at any more
code.

Consider these examples:

Code 1 vs Code 2
%% INITIALIZATION

x = 100

y = 88

%% INITIALIZATION

numStudents = 100 % [unitless]

avgGrade = 88 % [%]

The variables x and y are vague and non-descriptive while numStudents and avgGrade clearly describe what
they represent.

• Assign only one variable per line.

• Assign all calculations in your code to variables.

Comment Your Code

Comments provide information to help users understand the code. Use comments to inform others (particularly the

grader) what exactly you are attempting to implement. MATLAB uses % to define a comment. MATLAB ignores all text

and characters that follow a % when it executes that line.

• Use comments to describe the purpose of all variables and constants. Include units where applicable.

• Do not use %{ for multi-line comments.

• If you have several lines of related code (i.e., a “code block”), then include an explanatory comment to
summarize the functionality of the code block.

Example:

% Plot force vs time and format for technical presentation

plot(test_time,applied_force,'*')

title('Application of Force during Iron Beam Stress Test')

xlabel('Time (s)')

ylabel('Force (N)')

grid on

Updated Fall 2019

Page 3 of 5

Minimize Hardcoding

To hardcode means to use numbers in calculations instead of variables. Variables make code adaptable and powerful.
If you can assign values to variables, then do so. The only hardcoded values in your code should be constants and
array indexing values.

For example, you need to write code to determine the area of a triangle, 𝐴 =
1

2
𝑏ℎ, and the area of a parallelogram,

𝐴 = 𝑏ℎ, where the base is 10 units and the height is 8 units. Consider these two pieces of code:

Code A vs Code B
% Calculate area of a triangle and

% parallelogram when given base and

% height

base = 10; % [m]

height = 8; % [m]

area_tri = 0.5 * base * height; % [m^2]

area_para = base * height; % [m^2]

 % Calculate area of a triangle and

% parallelogram when given base and

% height

area_tri = 0.5 * 10 * 8; % [m^2]

area_para = 10 * 8; % [m^2]

Code A follows good programming standards regarding hardcoding. It assigns values to the variables base and

height and then uses those variables to calculate area. Code B calculates the area directly from hardcoded values.

Note that 0.5 is hardcoded in both equations because 0.5 is a constant, not a variable.

Hardcoding makes it difficult to adapt or update the code. In Code A, you can update the variables with new values
and all calculations using those variables will update accordingly. If you want to update Code B with new values, you
must find all the old values and replace each instance with the updated values. That process is inefficient and prone to
error.

Another benefit of variables is that they allow conversion from a script to a function. The use of variables in Code A
makes it easily translated into a function that can accept user inputs for base and height. Code B does not have that
flexibility.

To minimize hardcoding in your script or function:

• Assign all values to variables, unless the values are array indices or equation constants.

• Do not hardcode values for printing or for use in intermediate steps within the code.

Organize Your Script/Function

Organized code is easier to read and understand. The standard template has the following sections:

Initialization: Assign constants or variables, import data, and receive input from a user.

Calculations: Perform calculations and manipulate inputs.

Formatted Text & Figure Displays: Generate results to display, including figures and print statements.

Command Window Outputs: Paste Command Window outputs; use only when required by an assignment.

Analysis: Answer questions assigned in a given problem. These are only present in problem-specific
templates.

Use these sections whenever possible. If the problem has a problem-specific template, then you must use the sections
provided in that template.

Formatting

Code formatting shows the code structure and makes the code more readable to other programmers. Good
formatting uses whitespace and indentation to organize the code.

Whitespace – all types of code

Updated Fall 2019

Page 4 of 5

Whitespace helps with readability. Consider these two examples.

Example 1:

%% Example 1: poor use of whitespace

% Define ball bearing parameters

bb_diameter=0.25;% ball diameter, cm

steel_density=8.05;% density of steel, g/cm^3

% Calculate the mass of the ball bearing

bb_radius=bb_diameter/2;% ball bearing radius, cm

bb_vol=4*pi*bb_radius^3/3;% ball bearing volume, cm^3

bb_mass=steel_density*bb_vol; % ball bearing mass, g

% Display the mass to the Command Window

fprintf('The ball bearing mass is %.2f grams.\n',bb_mass)

Example 2:

%% Example 2: good use of whitespace

% Define ball bearing parameters

bb_diameter = 0.25; % ball diameter, cm

steel_density = 8.05; % density of steel, g/cm^3

% Calculate the mass of the ball bearing

bb_radius = bb_diameter/2; % ball bearing radius, cm

bb_vol = 4 * pi * bb_radius^3 / 3; % ball bearing volume, cm^3

bb_mass = steel_density * bb_vol; % ball bearing mass, g

% Display the mass to the Command Window

fprintf('The ball bearing mass is %.2f grams.\n', bb_mass)

Example 2 uses whitespace to make the code easier to read and understand. To ensure your code uses whitespace
appropriately,

• Place an additional line between sections or code blocks to help “group” the code.

• Place a space between operators and operands to improve readability. For example, y = y - g is easier to

read and quickly understand than y=y-g.

Indentation – specific types of code structures

Indentation establishes the structure of decisions and loops. Indent selection structures, repetition structures, and
nested structures. The following examples demonstrate proper indentation for various structures.

%% Example 3: selection structure with indentation

if r == 1

 new_temp = (temp_matrix(r+1) + temp_matrix(r))/2;

else

 new_temp = (temp_matrix(r-1) + temp_matrix(r))/2;

end

%% Example 4: repetition structure with indentation

new_temp = temp_matrix(n,m);

temp_increase = 1;

while new_temp < boil_point

 new_temp = new_temp + temp_increase;

end

Updated Fall 2019

Page 5 of 5

%% Example 5: nested structure with indentation

if (n < 2) || (m < 2)

 fprintf('Please enter a matrix with dimensions of at least 2x2')

else

 for x = 1:n

 for y = 1:m

 new_temp(x,y) = temp_update(temp_matrix,x,y);

 end

 end

end

(These standards were originally adapted in 2012 from CS 15900 Documentation, Programming, and Course
Standards.)

