Program Progression Guides

Disclaimer: The 2022-23 Purdue West Lafayette catalog is considered the source for academic and programmatic requirements for students entering programs during the Fall 2022, Spring 2023, and Summer 2023 semesters. The Program Progression Guide assists students in the development of an individualized 8-semester plan. Students are encouraged to use this guide, MyPurduePlan* (online degree auditing tool) and the Student Educational Planner (SEP) as they work with their academic advisor towards the completion of their degree requirements.

Notification: Each student is ultimately responsible for knowing, monitoring and completing all degree requirements.

An undergraduate degree in the College of Science requires completion of the following degree requirements.

<table>
<thead>
<tr>
<th>University Degree Requirements</th>
<th>University Core Curriculum**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 2.0 Cumulative GPA</td>
<td>Minimum 120 Credits that fulfill degree requirements</td>
</tr>
<tr>
<td>Minimum 32 Residency Credits (30000-level and above) at a Purdue University campus</td>
<td></td>
</tr>
</tbody>
</table>

University Core Curriculum**
https://www.purdue.edu/provost/students/s-initiatives/curriculum/courses.html

- Human Cultures: Behavioral/Social Science
- Human Cultures: Humanities
- Information Literacy
- Oral Communication
- Quantitative Reasoning
- Science
- Science, Technology & Society Selective
- Written Communication

Civic Literacy Proficiency
https://www.purdue.edu/provost/about/provostInitiatives/civics/

Required Major Program Courses (see following pages)

Departmental specific requirements, including 2.0 average GPA in classes required to fulfill biology requirements.
Minimum 2.0 cumulative GPA
Must have a 500-level BIOL course (3-credit BIOL lecture)

College of Science Core Curriculum
https://www.purdue.edu/science/Current_Students/curriculum_and_degree_requirements/college-of-science-core-requirements.html?

- Freshman Composition – 3 credits
- Technical Writing and Presentation - 3 credits
- Teaming & Collaboration (NC)
- General Education - 9 credits
- Foreign Language & Culture – 9 credits
- Great Issues - 3 credits
- Laboratory Science - 8 credits
- Multidisciplinary - 3 credits
- Mathematics - 6-10 credits
- Statistics - 3 credits
- Computing - 3 credits

Degree Electives

Any Purdue or transfer course approved to meet degree requirements in accordance with individual departmental policies. Consult the No Count Course List for courses which may not be used to meet any College of Science degree requirement.

* This audit is not your academic transcript and it is not official notification of completion of degree or certificate requirements.

** University Core Curriculum Outcomes may be met through completion of the College of Science Core curriculum. Students should consult with their academic advisors and MyPurdue Plan for course selections.
2022-23 Ecology, Evolution, and Environmental Biology Degree Progression Guide

The Department of Biological Sciences has suggested the following degree progression guide for the Ecology, Evolution and Environmental Biology Degree. Students will work with their academic advisors to determine their best path to degree completion. Course pre-requisites are specific to this degree plan.

### Credit Fall 1st Year	Prerequisite	Credit	Spring 2nd Year	Prerequisite
2 | BIOL 12100 | 3 | BIOL 13100 |
5 | CHM 12901 | 4 | CHM 25500-25501 | CHM 12901
2 | BIOL 13500 or 19500 | 3-5 | Calculus II selective | Calculus I (with min grade C-)
3-5 | Calculus I selective | 3-4 | Science Core Option |
3 | Science Core Option | 3 | Science Core Option |
1 | Elective (BIOL 11500 pref.) | 16-18 | BIOL 12100 co-req | 16-19

### Credit Fall 2nd Year	Prerequisite	Credit	Spring 2nd Year	Prerequisite
3 | BIOL 23100 | 3 | BIOL 24100 | BIOL 23100
2 | BIOL 23200 | 2 | BIOL 24200 |
4 | CHM 25600-25601 | 3 | CHM 33900 | CHM 33900 co-req
3 | Science Core Option | 1 | Science Core Option |
3 | Science Core Option | 2 | BIOL 28600 | BIOL 12100
3 | Science Core Option | 1 | Free Elective (BIOL 29300 pref) |
3 | Science Core Option | 3 | Science Core Option |
15 | | | |

### Credit Fall 3rd Year	Prerequisite	Credit	Spring 3rd Year	Prerequisite
3 | BIOL 59500 (Ecology) | 3 | Ecology Selective |
1 | BIOL 59500 (Lab in Ecology) | 4 | PHYS II Selective |
4 | PHYS I Selective | 3-4 | Science Core Option |
3 | Science Core Option | 3 | Science Core Option |
3 | Science Core Option | 1 | Elective (BIOL 39300 pref.) |
3 | Elective | 17 | |

### Credit Fall 4th Year	Prerequisite	Credit	Spring 4th Year	Prerequisite
3-4 | Intermediate Biology Selective | 3 | BIOL 58000 | BIOL 24100 and 28600
2-4 | Biology Selective | 3 | Science Core Option |
1-3 | Science Core Option | 3 | Elective |
3 | Elective | 12-17 | |

Science Core Curriculum Options

(once course needed for each requirement unless otherwise noted)

Options recommended for first- and second-year students

- Freshman Composition\(^{UC}\)
- General Education\(^{UC}\) (3 courses needed)
- Foreign Language and Culture\(^{UC}\) (3 courses needed)
- Multidisciplinary\(^{UC}\) (BIOL 12100)

Options recommended for third- and fourth-year students

- Technical Writing and Presentation\(^{UC}\) (COM 217 recommended)
- Statistics (STAT 50300)
- Computing (CS 17700 or CS 18000 also meet Teambuilding)
- Great Issues

\(^{UC}\) Select courses may also satisfy a University Core Curriculum requirement; see the University Core Requirement course list for approved courses. Students must have 32 credits at the 30000 level or above taken at Purdue.
Graduation Requirements:
- A minimum 2.0 average in all biology courses required for this major
- At least one 3-credit 500-level Biology course is required
- A minimum of 32 credits at or above the 300-level completed at a Purdue campus
- 120 Total Credits

BIOLOGY CORE:
1. BIOL 12100 Biology I: Diversity, Ecology and Behavior (2 cr.; fall)
2. BIOL 13100 Biology II: Development, Structure, and Function of Organisms (3 cr.; spring)
3. BIOL 13500 1st Year Biology Lab (2 cr.; both) or BIOL 19500 Year I Bio Lab: Diet, Disease & the Immune System (2 cr.; spring) or BIOL 19500 Year I Bio Lab: Disease Ecology (2 cr.; alternate fall) or BIOL 19500 Year I Bio Lab: Phages to Folds (2 cr.; fall) or ABE 22600 Biotechnology Lab (2 cr.; fall)
4. BIOL 23100 Biology III: Cell Structure and Function (3 cr.; fall)
5. BIOL 23200 Laboratory in Biology III: Cell Structure and Function (2 cr.; fall)
6. BIOL 24100 Biology IV: Genetics and Molecular Biology (3 cr.; spring)
7. BIOL 24200 Laboratory in Genetics and Molecular Biology (2 cr.; spring)
8. BIOL 28600 Intro. to Ecology & Evolution (2 cr.; spring)

9. **Intermediate Biology Selective:** Choose one of these eight options:
 - A. BIOL 32800 Principles of Physiology (4 cr.; spring)
 - B. BIOL 36700 Principles of Development (2 cr.; spring)
 - C. BIOL 39500 Macromolecules (2 cr.; fall)
 - D. BIOL 41500 Intro. to Molecular Biology (3 cr.; spring)
 - E. BIOL 41600 Viruses & Viral Diseases (3 cr.; spring)
 - F. BIOL 42000 Eukaryotic Cell Biology (3 cr.; fall)
 - G. BIOL 43600 Neurobiology (3 cr.; fall)
 - H. BIOL 43800 General Microbiology (3 cr.; fall)

10. BIOL 58000 Evolution (3 cr.; spring)
11. BIOL 59500 Ecology (3 cr.; fall)
12. BIOL 59500 Laboratory in Ecology (1 cr.; fall)
13. CHM 33901 Biochemistry Laboratory (1 cr.; spring)

14. **Lab Requirement:** Must meet Base Lab requirement as described on the back of this page.

15. **Ecology Selective:** One of these five courses:
 - A. BIOL 58210 Ecological Statistics (3 cr.; fall)
 - B. BIOL 58705 Animal Communication (3 cr.; alternate fall)
 - C. BIOL 59100 Field Ecology (4 cr.; alt fall)
 - D. BIOL 59200 Evolution of Behavior (3 cr.; alt spring)
 - E. BIOL 59500 Building the Tree of Life (3 cr.; spring)
 - F. BIOL 59500 Disease Ecology (3 cr.; spring)

16. **Biology Selective:** One course from the following:
 - BIOL 43800 General Microbiology (3 cr.; fall)
 - BIOL 43900 Microbiology Lab (2 cr.; fall)
 - BIOL 48300 Environmental & Conservation Biology (3 cr.; alt spring)
 - BIOL 49500 Biodiversity & Museum Research (3 cr.; fall)
 - BIOL 58210 Ecological Statistics (3 cr.; fall)
 - BIOL 58705 Animal Communication (3 cr.; alt fall)
 - BIOL 59100 Field Ecology (4 cr.; alt fall)
 - BIOL 59200 Evolution of Behavior (3 cr.; spring)
 - BIOL 59500 Building the Tree of Life (3 cr.; spring)
 - BIOL 59500 Disease Ecology (3 cr.; spring)
 - AGEC 52500 Environmental Policy Analysis (3 cr.; spring)
 - ANTH 53500 Foundations of Biological Anthropology (3 cr.; spring)
 - BTNY 30200 Plant Ecology (3 cr.; spring)
 - BTNY 30500 Plant Evolution and Taxonomy (3 cr.; fall)
 - BTNY 56100 Survey of Mathematical Biology (3 cr.; spring)
 - CE 35000 Environmental Engineering (3 cr.; both)
 - FNR 44700 Vertebrate Population Dynamics (4 cr.; fall)
 - POL 52300 Environmental Politics and Public Policy (3 cr.; fall)

Other courses may be considered for the Biology Selective requirement (#16). See your advisor for more information.

Footnotes and other requirements are on the back of this page.
Base Laboratory Requirement (BLR) for all Biology Majors

1. Students must complete one of the “Required” courses in the chart below. Undergraduate research cannot be used to meet this requirement.
2. Students must also complete Objectives A and B as listed in the chart below with courses or research or a combination of the two.
3. **Descriptions of Objectives A and B (not all tasks must be met to satisfy an objective):**
 - **Objective A** – Demonstrate the ability to plan and design hypothesis-driven experiments, simulations or discovery/observational experiments
 - i. Conduct an appropriate literature review for a specific scientific topic.
 - ii. Generate an applicable hypothesis (-es) for your research project
 - iii. Identify techniques to be used in your project, with justification of those techniques.
 - iv. Write a formal research proposal.
 - v. Write a detailed outline of experiments
 - **Objective B** - Develop the ability to appropriately analyze, critically evaluate, and depict data. Demonstrate the ability to effectively communicate scientific information orally and in writing, including synthesizing and evaluating scientific literature and putting experimental results in their appropriate scientific context.
 - i. Analyze data
 - ii. Use appropriate ways to depict and communicate data (e.g., graphs, movies, images, etc.). Present the research at lab meetings, in a talk, or at a poster session.
 - iii. Write a summary (or summaries) of the data.
4. If research is used, the research director will be the one who decides if the research meets Obj A and/or Obj B.
5. If research is used, it must include at least four credits of BIOL 49400 or 49900. BIOL 29400 research does not count toward this requirement.
6. Students who successfully complete a Biology Honors Research Thesis have successfully met Objectives A and B but must still complete a “Required Course.”
7. The “Microbiology” and the “Health & Disease” majors both require BIOL 43900: The “Ecology, Evolution and Environmental Biology” major requires BIOL 59500 Laboratory in Ecology.

Base Laboratory Requirement Chart

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Required Course</th>
<th>Obj. A</th>
<th>Obj. B</th>
<th>Usually Offered</th>
<th>Format</th>
<th>Pre-Req (PR) or Co-Req (CR) beyond core courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 32800</td>
<td>Principles of Physiology (4cr)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Spring</td>
<td>PR=32800 or CR=43600</td>
</tr>
<tr>
<td>BIOL 39500DIST</td>
<td>Exper Design & Quant Analysis (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>BIOL 43900</td>
<td>Microbiology Lab (2cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Fall</td>
<td>PR/CR=43800</td>
</tr>
<tr>
<td>BIOL 44212</td>
<td>Microscopy & Cell Bio (1cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Spring</td>
<td>5-wk module</td>
</tr>
<tr>
<td>BIOL 48300</td>
<td>Environmental & Conservation Biology (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>alt Spring '24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 49500BMR</td>
<td>Biodiversity & Museum Research (3cr)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 49500DSB</td>
<td>Data Science for Biologists (3cr)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 49500</td>
<td>Data Science: Good vs. Bad Data (3cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 49500RAB</td>
<td>Research in Animal Behavior (1cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Fall</td>
<td>5-wk module</td>
<td></td>
</tr>
<tr>
<td>BIOL 49500TEC</td>
<td>Topics in Endocrinology & Cancer (2cr)</td>
<td>X</td>
<td></td>
<td></td>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 54200</td>
<td>Neurophysiology (1cr)</td>
<td>X</td>
<td></td>
<td></td>
<td>Fall</td>
<td>5-wk module</td>
<td>PR=32800 or CR=43600</td>
</tr>
<tr>
<td>BIOL 58210</td>
<td>Ecological Statistics (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>Fall</td>
<td>PR=STAT 50300</td>
</tr>
<tr>
<td>BIOL 59100</td>
<td>Field Ecology (4cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>alt Fall '23</td>
<td></td>
<td>PR=59500EL</td>
</tr>
<tr>
<td>BIOL 59500BTL</td>
<td>Building the Tree of Life: Phylogenetics (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Spring</td>
<td>research experience recommended</td>
<td></td>
</tr>
<tr>
<td>BIOL 59500CRYO</td>
<td>CryoEM 3D Reconstruction (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>Fall</td>
<td>PR=PHYS 23300 or 17200</td>
</tr>
<tr>
<td>BIOL 59500BN</td>
<td>Data Analysis in Neuroscience (1cr)</td>
<td>X</td>
<td></td>
<td></td>
<td>Spring</td>
<td>5-wk module</td>
<td></td>
</tr>
<tr>
<td>BIOL 59500EL</td>
<td>Laboratory in Ecology (1cr)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Fall</td>
<td>PR/CR=59500 Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 59500</td>
<td>Neural Mechanisms in Health & Disease (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>alt Spring '23</td>
<td>PR=32800 or 43600; CR=56200</td>
<td></td>
</tr>
<tr>
<td>BIOL 59500SBL</td>
<td>Structural Biology Lab (1cr)</td>
<td>X</td>
<td></td>
<td></td>
<td>Spring</td>
<td>5-wk module</td>
<td></td>
</tr>
<tr>
<td>BIOL 59500TMM</td>
<td>Theory of Molecular Methods (3cr)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>alt Spring</td>
<td>molecular biology</td>
<td></td>
</tr>
</tbody>
</table>
CHEMISTRY
1. General Chemistry: CHM 12901 General Chemistry with a Biological Focus (5 cr.; fall)
2. Organic Chemistry: CHM 25500 Organic Chemistry (3 cr.; both) and CHM 25501 Organic Chemistry Lab (1 cr.; both) and CHM 25600 Organic Chemistry (3 cr.; both) and CHM 25601 Organic Chemistry Lab (1 cr.; both)
3. Chemistry Selectives: (must choose one of the following options) 5
 1. BCHM 56100 General Biochemistry I (3 cr.; fall) or
 2. CHM 33900 Biochemistry: A Molecular Approach (3 cr.; spring) or
 3. CHM 43300 Introductory Biochemistry (3 cr.; fall)
PHYSICS Selectives: One of these two options:
 1. PHYS 23300 Physics for Life Sciences I (4 cr.; both) and
 PHYS 23400 Physics for Life Sciences II (4 cr.; both)
 2. PHYS 17200 Modern Mechanics (4 cr.; both) and one of the following two choices:
 A. PHYS 27200 Electric and Magnetic Interactions (4 cr.; both) or
 B. PHYS 24100 Electricity and Optics (3 cr.; both) and PHYS 25200 Electricity and Optics Laboratory (1 cr.; spring)

COLLEGE OF SCIENCE CORE
Composition and Presentation; Teambuilding and Collaboration; Language and Culture; Great Issues; General Education; Multidisciplinary Experience; Mathematics; Statistics; Computing

OTHER: all University Core and Civics Literacy Requirements must also be completed.

FREE ELECTIVES Approximately 8-25 credits

1 This course may count as the Intermediate Biology Selective and as the College of Science Teambuilding and Collaboration requirement.
2 BIOL 43800 may be used for requirement #9 or for requirement #16, but not both.
3 This course may be used for #15 or #16. It may not be used for #15 and #16.
4 This course may count for the Biology Selective course and as the College of Science Great Issues requirement
5 Students who take CHM 12901 for General Chemistry must take CHM 33900 and 33901 for the Chemistry Selective. Students who end up with Special Case approval for some other Gen Chem courses may choose the other Chem Selective options. All students must take CHM 33901.

EEEB 6/2022