
HabSim v6.3 User Manual

Resilient Extra-Terrestrial Habitats Institute (RETHi)

Document Owner(s):

Luca Vaccino (*lvaccino@purdue.edu*)

Megan Rush (*rush39@purdue.edu*)

Last Updated: May 2024

Table of Contents

Abbreviations	3
Introduction	4
Use of HabSim	4
HabSim Visualization	4
Disruption Scenarios	5
Hazardous States and Safety Controls	7
Running Scenarios	7
Installation and Access Instructions	7
MATLAB Requirements and Set Up	7
Accessing HabSim v6.3	8
Input Configuration	9
MCVT_v6_Input_File.m	9
Simulink_Agent_Settings.csv	16
How to Run a Simulation	18
Quick Start	19
Output Configuration	19
Data Inspector	23
Example Simulations	24
Example 1: Micrometeorite Impact	24
Example 2: Fire	37
Old Example	49
Appendix	50
Overview of Core Systems	50
Subsystem Descriptions	50
Simulink Architecture	52
List of Disruption Scenarios	54
Data Output	61
Plot Output	71
Transitions	78

Abbreviations

AG Agent system

CDHS Communication and data handling

CPT Cyber-physical testbed

ECLSS Environmental control and life support

system

FDD Fault detection and diagnosis system

IE Interior environment IL Intensity level

MCVT Modular coupled virtual testbed
National Aeronautics and Space

PW Administration Power system

RETHi Resilient extra-terrestrial habitat

SPD Smart power distribution

SPL Structural protective layer system

ST Structural system

Introduction

HabSim, formerly known as the Modular Coupled Virtual Testbed (MCVT), is a lunar habitat simulation platform based on RETHi's Reference Habitat Concept (RHC). The RHC is a conceptual habitat design created to inform the development of simulation tools, consisting of a dome with Environmental Control and Life Support System (ECLSS), power equipment, and an airlock. HabSim is a 1/5th scaled model of the RHC to achieve real-time simulation. HabSim simulates the subsystems required for a habitat to function and their interactions. The platforms can run nominally, or users can input disruptions to see how the habitat responds to different disruptions.

Use of HabSim

HabSim Visualization

HabSim supports the modeling of disruption scenarios which include both environmental and operational hazards to the system, the propagation of the system into hazardous states, and the implementation of safety control activities to enable recovery from these hazardous states. The physical distribution of the subsystems in HabSim is shown in Figure 1. The image on the left shows the outside view, with the habitat in the middle (orange circle) and the surrounding buildings and panels. The image on the right shows the habitat zoomed in with all of its internal systems.

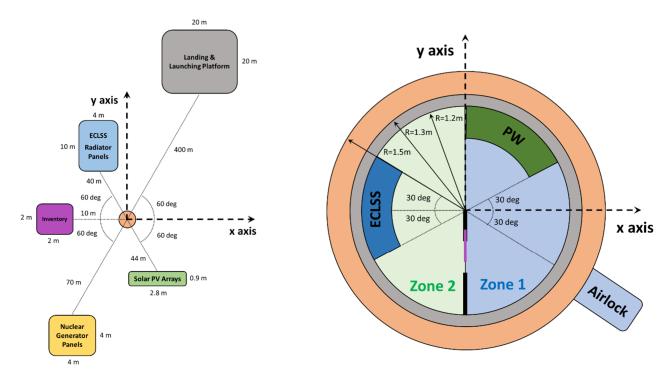


Figure 1: HabSim v6.3 Subsystem Layout

Disruption Scenarios

Currently, HabSim v6.3 supports seven disruption scenarios:

- 1. Dust accumulation
- 2. Micrometeorite impact
- 3. Moonquake
- 4. Fire
- 5. Sensor failure
- 6. Cooling system cascade
- 7. Airlock leakage

For a micrometeorite impact, the exterior components can be impacted in three locations and the structure can be impacted in four different locations. These can be specified in the input file. For a visual of those locations, see Figure 2. For the exact values of the locations, see Table 1.

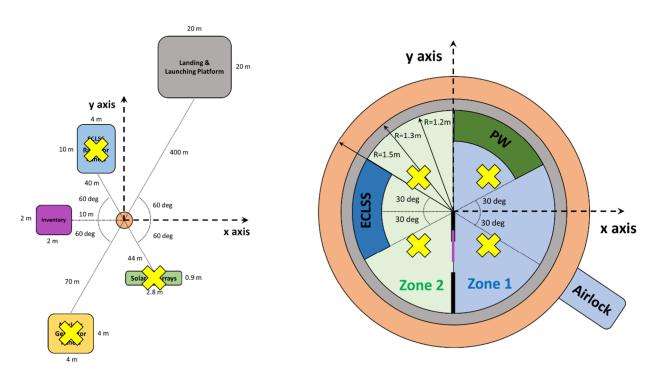


Figure 2: Micrometeorite Impact Locations Visual

Table 1: Micrometeorite Impact Coordinates

On Solar Array	[+23.38, -38.92] m
On Nuclear Panels	[-33.80, -63.57] m
On ECLSS Radiator	[-22.26, +35.62] m
Above Power in Z1	[+0.54, +0.54] m
Above ECLSS in Z2	[-0.54, +0.54] m
Z1	[+0.54, -0.54] m
Z2	[-0.54, -0.54] m

A fire in the interior environment can start anywhere within the habitat and extend radially outward as shown in Figure 3. The user can specify the starting location in the input file as [R, θ], where R is the radial location (0 < R < 1.2 m) and θ is the angle from the origin (0 < θ < 360 deg, θ ± 90, 270 deg).

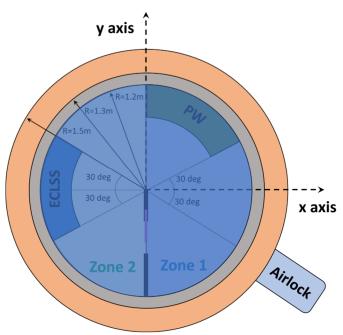


Figure 3: Fire Start Locations in the Interior Environment (blue)

Disruptions can originate in one or more subsystems in HabSim and potentially impact secondary subsystems, depending on the intensity of the disruption. The intensity of each disruption is controlled by a user through an Intensity Level (IL) setting in the input. These intensity levels are 1, 2, 3, 4, or 5, with severity of the disruption and resulting hazardous states increasing with the intensity. An IL of 1 means no disruptions, while intensity level of 5 is the maximum disruption effect. Users can control the intensity of each disruption, except for the launch/landing event and nominal dust accumulation. These disruptions do not have an associated intensity, but a user can specify the timing of these events and severity of dust accumulation on relevant subsystems. Those disruptions with intensities propagate differently for each intensity level.

To visualize the physical interdependencies in HabSim, Figure 4 is a matrix to show where each disruption can originate and how the disruption effects can propagate to other subsystems. Notice that there are four levels to the propagation to indicate four levels of cascading effects. Each lower-level effect cascades from the level directly above. A more in-depth flow chart of each disruption and their resulting hazardous states can be found in the Appendix section List of Disruption Scenarios.

	11 - SPL	2 - Structure		3 - Power		8 - Interior	5 - ECLSS			Sensors	Appendix		
			Solar	Nuclear	Energy	Power	Environment	Temperature	Pressure	Air	Radiator		Figure
					Storage	Distribution							
Meteorite Impact - Structure													Fig. 10, 11, 12
Meteorite Impact - Solar													Fig. 8 (left)
Meteorite Impact - Nuclear													Fig. 8 (right)
Meteorite Impact - ECLSS													Fig. 9
Moonquake													Fig. 16, 17
Fire													Fig. 13, 14, 15
Sensor Failure													Fig. 18
Launch/Landing Event													Fig. 19 (left)
Nominal Dust Accumulation													Fig. 19 (middle)
Airlock Leakage													Fig. 19 (right)
Cooling System Cascade													Fig. 20

First	Initiation of disruption in HabSim model
Second	Potential system that can be impacted by the disruption originating in the first subsystem based on cyber or physical interdependencies
Third	Potential system that can be impacted by the hazardous state occurring in the second subsystem based on cyber or physical interdependencies
Fourth	Potential system that can be impacted by the hazardous state occurring in the third subsystem based on cyber or physical interdependencies

Figure 4: General Disruption Propagation Matrix for HabSim v6.3

Hazardous States and Safety Controls

Since each disruption can cause one or more hazardous states in the system, we further identified the hazardous states for the first subsystem where the disruption originates and the second, third, and fourth subsystems to which effects can propagate. Then, we must identify appropriate safety controls to address the original disruption and subsequent hazardous states in all subsystems. The relevant hazardous states and safety controls for the considered disruptions/failures in HabSim v6.3 are provided in the Table 1. Users will have the ability to modify the input parameters to simulate each disruption scenario and its intensity, as well as the specifications for the safety controls.

Running Scenarios

Installation and Access Instructions

MATLAB Requirements and Set Up

Install MATLAB 2020a (link). For colleagues who are not familiar with Simulink, please check the website (link) to learn about it. After installation, check that there is a proper compiler installed (link). To check the current version of compilers in your PC, please run the command: mex-setup. If no compiler shows, click the down arrow on Add-Ons Icon, select Get Add-Ons, search for MinGW (available at no charge for Windows users) and install it. For Mac users, please install Xcode 12.x or later (link). The model can be run by using the online MATLAB version. Once MATLAB is installed, open MATLAB. In the Toolbar, click the down arrow on Add-Ons Icon and select Manage Add-Ons. See Figure 5.

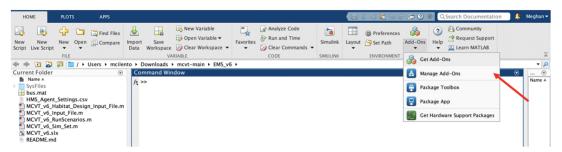


Figure 5: Add-On Icon Selection in MATLAB Toolbar

An Add-On Manager window will open, and in that window click Get Add-Ons. An Add-On Explorer window will then appear. Use the search bar in this window to find and install the following toolboxes:

- (1) Signal Processing Toolbox
- (2) DSP System Toolbox
- (3) System Identification Toolbox
- (4) Control System Toolbox
- (5) Statistics and Machine Learning Toolbox
- (6) Simulink Real-Time
- (7) Simscape Electrical Toolbox
- (8) Stateflow Toolbox
- (9) Optimization Toolbox

If there are any errors, install the following toolbox as well:

(10) Deep Learning Toolbox

When installing these toolboxes, MATLAB will restart for each one. The installation process takes time to complete, and some toolboxes will take longer than others. You do not have to purchase any toolbox if using a university license of MATLAB. If this issue occurs, contact your advisor and/or university technology services. When all toolboxes are installed, close out of the Add-On Manager window.

Accessing HabSim v6.3

Using the PCs on Purdue Campus

The RETHi offices on Purdue University campus have six PCs set up to run HabSim v6.3. The office is in the Hall for Discovery and Learning Research (DLR) 228C. The HabSim v6.3 on these computers is a baseline integrated version that is not undergoing development or testing. Log onto a PC using the provided username and password on the desk.

Ask for the most recent version of the code via Slack with the naming scheme $MCVT_v6$ - ###. Make a new desktop folder with your name and create a copy of the HabSim v6.3 folder there. Only modify the version in your folder.

Downloading on GitHub

Sign into GitHub and download the HabSim repository. Do not clone, push, or pull from this repository. A frozen version of HabSim v6.3 will be shared. Modifications to input files must be made on your local computer when running simulations.

Input Configuration

HabSim users will need to properly configure two different files to run simulations. The first is a MATLAB script titled MCVT_v6_Input_File.m. The second is an Excel spreadsheet titled Simulink Agent Settings.csv. Instructions on modifying each file are provided below.

This file houses input parameters for the HabSim simulations. Input variables are available for users to configure design specifications for several core systems, as well as disruptions that can damage the system. Table 2 provides the input parameters listed in this file as well as descriptions and units for reference.

Table 2: Parameters Available in MCVT v6 Input File.m

	Variable Name	Accepted Values	Description	Units
Configuration	SysFilePath*	'SysFiles'	Where the system files are stored	N/A
	T_end	Any number from 1 – 2500 Default = 100	Total simulation time	Seconds
	T_One_Earth_Day**	24*60*60;	Length of a day on Earth	Seconds
Settings	T_One_Lunar_Day**	29.5306*24*3600	Length of a day on the Moon	Seconds
	T_One_Lunar_Day_Time**	0.5*T_One_Lunar_Day	Length of lunar daytime	Seconds
	dt_Saving_Data	1	Sampling rate for data saving	N/A
	norminal_dust_accum_rate	Any number in each index Default: [0,0,0]	Dust accumulation rate without meteorite impact events on [Nuclear Radiators, Solar PV Arrays, ECLSS Radiators]	
	Dust_cleaning_thresholds	Any number in each index Default: [13,16,50]	Agent will not be scheduled to clean the panels until the amount of dust reaches these values [Nuclear Radiators, Solar PV Arrays, ECLSS Radiators]	g/cm^2
	Nominal_air_leak	Any number in each index Default: [2.65e-5, 2.65e-5]	Nominal air leakage in [Zone 1, Zone 2]	Meters
	Maint.Sys5. Fan	0.0	Dust accumulation rate on the fan in ECLSS	%/S
Nominal Condition Settings	Sun.Start_angle 135° 45° 179° 0°	0, 45, 90, 135, or 179	Specify the start angle of solar radiation	Degrees
	Delay_Closing_Pocket_Door	Any number >= 0	This can model the time it takes to evacuate one zone before closing the door or it can reflect the delay due to detecting the hazard or malfunction of the door.	Seconds

			T	T
Nominal ECLSS Settings	Target_Point_cooling	1	Cooling setpoint margin	K
	Target_Point_heating	1	Heating setpoint margin	K
	ECLSS_radiatorLoop_discreteNumber	Default = 50	Number of elements in finite volume method of the radiator along its length	N/A
	ECLSS_radiatorLoop_LengthPerPanel	Default = 0.01	Length of one radiator	Meter
	N_natural_dust	Default = 50	Number of the panels that get nominal dust accumulation	N/A
	solar_PV_capacity	5.7	Array power generation capacity	kW
	solar_DRatio_ini	Any value [0, 1] Default = 0	Initial dust cover ratio	N/A
	nuclear_power_multiplier	1	Nuclear power scaling factor Maximum power is 5.8	N/A
Nominal PW Settings	ES_number_of_cells	Default = 1000	Number of battery cells	N/A
	cell_energy	0.15	Max energy per battery cell energy	kWh
	Maximum_energy	ES_number_of_cells * cell_energy	Maximum energy that can be stored	kWh
	energy_stored_initial	0.2*(ES_number_of_cells * cell_energy)	Initial energy stored	kWh
ECLSS Settings	ECLSS_Diameter_Relief_Valve	Default = 0.01	Diameter of the ECLSS relief valve	Meter
Agent Settings	Sim_Agent.Ititial_Prep	Any number >= 0	The time that takes to call and prepare Agent after a disruption scenario occurred	Seconds

	Sim_Agent.Travel_Speed	Any number > 0	The speed that Agent travels to go from the location of one damaged component to the location of the other damaged component	Meter/seco nd
	Sim_Agent.Distance_Type	1, 2, or 3	1 -> Distances all the same constant 2 -> Distances not including traveling to the inventory 3 -> Distances including traveling to the inventory	Meter
Deterministic vs. Stochastic	SD_Toggle.PW	1 or 2 (1 is default)	(1) Deterministic, (2) Stochastic	N/A
Micrometeorite	SD.Sys3.Cov_3	[1 2 3]	Number of converters damaged in case of micrometeorite impact IL 4	N/A
Effects on PW	SD.Sys3.Cov_5	[1 2 3 4 5]	Number of converters in case of micrometeorite impact IL 5	N/A
	Sys6U.agent_operational_mode	1	Operational mode of the agent	N/A
Decision- Making Settings	Sys6U.settings_csv	"HMS_Agent_Settings_User.c sv"	Specify PATH to the settings CSV for HMS and Agents	N/A
	Sys6U.test_settings_file	"Diagnostic_Test_Settings_Us er.csv"	Specify PATH to the settings CSV for Diagnostic Tests	N/A
	SD_Toggle.ECLSS	1 or 2 (1 is default)	(1) Deterministic, (2) Stochastic	N/A
	SD.Sys5.Dmg_fire	[3,4,5,6,7]	3-7 can be damaged in a fire	N/A
	SD.Sys5.Dmg_mi	[1,2,3,4,5,6,7]	1-7 can be damaged in a micrometeorite impact	N/A
ECLSS	SD.Sys5.Dmg_mq	[1,2,3,4,5,6,7]	1-7 can be damaged in a moonquake	N/A
	N_dmg_fire	Any integer 1-5 Default = 2	The number of damaged components initially due to fire	N/A
	N_dmg_mi	Any integer 1-7 Default = 5	The number of damaged components initially due to micrometeorite impact	N/A
	N_dmg_mq	Any integer 1-7 Default = 3	The number of damaged components initially due to moonquake	N/A

	meteorite.IL	1, 2, 3, 4, or 5	Meteorite impact Intensity Level	N/A
	meteorite.impactStart	Any number > 0	Meteorite impact start time	Seconds
	meteorite.coordinates	Exterior Components: [+23.38,-38.92] [-33.80,-63.57] [-22.26,+35.62] Dome/Interior Components: [+0.54,+0.54] [-0.54,+0.54] [+0.54,-0.54] [-0.54,-0.54]	[x ,y] meteorite impact cartesian coordinates. Refer to Figure 1 and Table 2.	Meter
	meteorite.holeRadius_IL4	Any number >=0 Recommended Range: [0 0.15]	Hole size in case of meteorite disruption with IL 4	Meter
Micrometeorite Disruption	meteorite.holeRadius_IL5	Any number >=0 Recommended Range: [0 0.15]	Hole size in case of meteorite disruption with IL 5	Meter
	meteorite.dustDuration	Any number > 0	Duration of dust accumulation on exterior components	Seconds
	meteorite.dustAccumRate	Any numbers > 0 [0.9,0.5,0.2]	(1) Nuclear Radiators (2) Solar PV Arrays (3) ECLSS Radiators	g/cm^2/s
	SD.Sys3.ES_damage_Meteorite_IL_4	Recommended Value: 0.3	Remaining energy storage in case of meteorite impact IL = 4	N/A
	SD.Sys3.ES_damage_Meteorite_IL_5	Recommended Value: 0.1	Remaining energy storage in case of meteorite impact IL = 5	N/A
	SD_Toggle.ECLSS	1	(1) Deterministic, (2) Stochastic	N/A
	SD.Sys5.Dmg_mi	[1, 2, 3, 4, 5, 6, 7]	ECLSS components damaged by micrometeorite impact	N/A
	N_dmg_mi	5	The number of damaged components initially due to meteorite impact	N/A

	fire.IL	1, 2, 3, 4, 5	Fire Intensity Level	N/A
		1, 2, 0, 1, 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17/1
	fire.tStart	Any number >= 0	Fire start time	Seconds
	fire.tDetection	Any number >= 0	The time that the fire is detected	Seconds
	fire.polar_coordinates	[0≤R≤1.2, 0≤θ≤360]	$[R,\theta]$ R is the radial location and θ is the angle from the origin of fire initiation point. Refer to Figure 3.	[Meters, Degrees]
Fire Disruption	SD.Sys3.ES_damage_Fire_IL_4	Recommended: 0.3	Energy storage left when fire IL 4 occurs	N/A
rne Distuption	SD.Sys3.ES_damage_Fire_IL_5	Recommended: 0.1	Energy storage left when fire IL 5 occurs	N/A
	fireSpreadRate	0.001 Max: 0.007 m/s	Fire spread rate	
	SD.Sys5.Dmg_fire	[3,4,5,6,7]	ECLSS components damaged by fire	N/A
	N_dmg_fire	1, 2, 3, 4 or 5	The number of damaged components initially due to fire	N/A
	fireSpreadRate	0.001	Fire spread rate	m/s
	moonquake.IL	1, 2, 3, 4, or 5	Moonquake Intensity Level	N/A
	moonquake.tStart	5	Moonquake start time	Seconds
Moonquake	moonquake.Duration	Any number > 50	Moonquake duration (must be greater than 50)	Seconds
	SD.Sys3.ES_damage_Moonquake_IL_5	0.89	Remaining energy storage after moonquake affects ES	N/A
	SD.Sys5.Dmg_mq	[1, 2, 3, 4, 5, 6, 7]	ECLSS components that can be damaged by moonquake	N/A

	N_dmg_mq	1, 2, 3, 4, 5, 6, or 7	The number of damaged components initially due to moonquake	N/A
	airlock.IL	1, 2, 3, 4, or 5	Airlock failure Intensity Level	N/A
Airlock	airlock.tStart	Any number > 0	Airlock start time	Seconds
	airlock.tDetection	Any number > 0	Airlock fault detection time	Seconds
	launch.tStart	Any number > 0	Start of dust accumulation due to launch/landing event (place after simulation to indicate no launch)	Seconds
Shuttle Launch	launch.Duration	Any number > 0	Duration of launch	
	launch.Exhaust_Intensity	50	Dust intensity parameter for engine exhaust	mg/cm^2/s
	CoolantNuclear.IL	1, 2, 3, 4, or 5	Nuclear cooling intensity level	N/A
Nuclear Cooling leak	CoolantNuclear.tStart	Any number > 0	Nuclear cooling leak start time	Seconds
	CoolantNuclear.tDetection	Any number > 0	Nuclear cooling detection time	Seconds
Sensor failure	sensorFault.generalsensor_IL	1, 2, 3, 4, or 5	Sensor failure Intensity Level	N/A
Sensor famure	sensorFault.generalsensor_tStart	Any number > 0	Sensor failure start time	Seconds

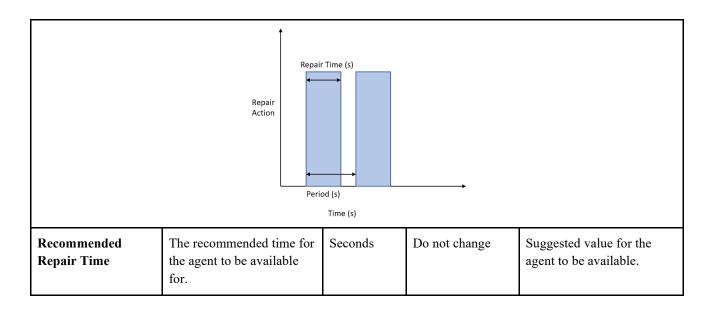
^{* =} Do not change.
** = Added for debugging purposes. Use this scaling feature at your own discretion.

Simulink Agent Settings.csv

This spreadsheet houses the input parameters that configure how an agent responds to the hazardous states that occur during HabSim simulations. Each hazardous state has an associated agent safety control to repair the damage and enable recovery back to a nominal state. Table 3 provides descriptions, units, and appropriate values for the relevant columns that users must modify to configure the repairable features in the HabSim.

The first four columns identify the subsystem and what needs to be fixed. System/Subsystem/Component, Location, Index, and Failure Mode (ID) are for identification purposes and do not need to be changed. T2F schedules the agent. The user lists the first component they want repaired with "1," the second with "2," and so on. All boxes do not need to be filled, only as many as the user wants to fix. If no columns of T2F are filled, there will be no agent action.

Repair Rate allows the user to change the rate of the repair activity. This can be changed to reflect different safety controls or implementation strategies in use. Depending on the repair rate, the task may or may not be completed to enable full recovery, but only repair partially during the set time frame. Some trial and error might be necessary to determine the repair rate that will be appropriate to enable the desired repair behavior.


Repair Time reflects how long the agent is available to repair the damaged component. If the agent is set to stochastic, the agent will work for specified Repair Time. During the repair time frame, the agent will complete the task at the set Repair Rate. These will determine the time an agent works to complete the corresponding repair activity. This time frame is not how long it takes to have full recovery, but rather how long the user allows the agent to work on that activity.

The Period is the repair time plus the amount of time the agent is waiting to start the next operation. It can be seen visually in the Agent Repair Action plots as the distance between the two rising edges of agent action (see visual in table column). The period must be larger than the Repair Time.

Column Name in Spreadsheet	Parameter Description	Units	Acceptable Values	Comments
System/Subsystem/ Component	The affected system	N/A	Do not change	Lists the top system.
Location	Affected system component	N/A	Do not change	Lists the component and/or what is wrong with it.
Index	List from top to bottom of everything	N/A	Do not change	List 1-119 items in order.

Table 3: Parameters Available in Simulink_Agent_Settings.csv

Failure Mode (ID)	Used to identify the failure mode within repair actions	N/A	Do not change	Identification numbers starting with: $5 = ECLSS$ $3 = Power$ $2 = Structure$ $11 = SPL$ $8 = Interior Environment$
T2F	Repair Priority	N/A	Nonnegative integers	Sets the scheduling of the agent repair activities. They are scheduled based on the chronological order of values in this column. Repair activities with the smallest integer values will be scheduled first by command and control. 1 = repaired first 2 = repaired second 3, 4, 5
Repair Rate	The rate of the repair activity	Depends on repair type	Depends on repair type	Use different repair rates for each safety control.
Min Repair Rate	The minimum value for the repair activity	Depends on repair type	Do not change	Suggested value for the minimum possible repair rate.
Max Repair Rate	The maximum value for the repair activity	Depends on repair type	Do not change	Suggested value for the maximum possible repair rate.
Repair Time	Time the agent is available to repair the damaged component.	Seconds	Nonnegative	The width of the square wave we are seeing in the agent repair action plot.
Period	The repair time + the time the agent is waiting to start the next operation.	Seconds	Nonnegative, Period > Repair Time	The distance between two rising edges in the agent repair action plot.

How to Run a Simulation

HabSim is composed of many MATLAB, Simulink, and Excel files. Table 4 shows the three most important files for the regular user:

Table 4: Files for Using HabSim

File Name	Description
	MATLAB script is used to change the inputs of HabSim to represent
MCVT_v6.3_Input_File.m	different habitat settings and
	disruptions
MCVT_v6_3_RunScenarios.m	MATLAB script is used to start the entire simulation, give updates throughout, and plot data.
Simulink_Agent_Settings.csv	Excel spreadsheet that tells the agent what to fix and when.

When the input files are configured to run your desired scenario, you should first make sure that you **save** the updated input files (MCVT_v6_Input_File.m and Simulink_Agent_Settings.csv). Then, open the script MCVT_v6_RunScenarios.m. This script is set up to call the two input files already modified. The simulation will continue with the status printing out at your set print interval. Monitor the command window in case any errors are thrown. Otherwise, once the simulation is complete, the output data will be written to the output folder specified in the input file. See the next section for information on the output data from HabSim v6.3 and which variables are relevant for each disruption scenario.

Quick Start

- 1. Open two MATLAB files: MCVT_v6.3_Input_File.m and MCVT_v6_3_RunScenarios.m.
- 2. In the Input File script, uncomment lines 18-19. This will save your data.
- 3. In the Run Scenarios script, uncomment lines 34-46. This will run the code.
- 4. Chose a plotting script to write in line 44 to replace the Plot Data placeholder.
- 5. Delete lines 43 and 46.
- 6. Click the green arrow to run the Run Scenarios script.

Figure 6 shows the updates printed in the command window as the HabSim code is running:

```
Command Window

-[1/6] Input File Loaded (0.14126 sec)
-[2/6] Habitat Design Input File Loaded (0.0002958 sec)
-[3/6] Simulation Parameters Loaded (0.0003059 sec)
-[4/6] Subsystems Parameters Loaded (0.84638 sec)

PW Deterministic Case
ECLSS Deterministic Case
EE Nominal dust acumulation rate: [0 0 0] (g/cm^2/s)
Fan dust acumulation rate: 0 (g/cm^2/s)
Start angle of the Sun: 0 (deg)
Total simulation time: 10 (sec)

Nominal Operating Condition
-[5/6] MCVT Simulation in Progress...
Warning: the state of charge has dropped below the threshold of 0.5. Battery will continue to discharge.Elapsed time is 32.263744 seconds.
### MCVT Simulation Completed (32.2638 sec)
-[6/6] Output Files Saved in MCVT_run1_12-Feb-2024_16.19

### Society Advanced Completed (32.2638 sec)
-[6/6] Output Files Saved in MCVT_run1_12-Feb-2024_16.19
```

Figure 6: Example Command Window Updates

Plots will open automatically. Running HabSim for the first time shows no disruptions and no agent repairs for a 250 second simulation.

Output Configuration

Output data for each HabSim simulation are provided in .mat files corresponding to each core subsystem. The core subsystems are each assigned a unique number in Simulink, and therefore, the output files are named by this unique number. See Table 6 in the Appendix for each subsystem and its corresponding number. All output variables accessible to users in each subsystem are listed in Table 6 in the Appendix.

Not all output data are needed by a user, and not all data needed are accessible to a user in the output folder. Table 5 lists the relevant performance metrics that a user might want to observe to understand the damageable/repairable behavior for each disruption scenario. Table 6 includes the general performance metric name and the variable name in the output data tables if they are available. Otherwise, the output data that users can directly access are plotted in a script, and the plots are specified in Table 7 in the Appendix. This file automatically reads the available data for all subsystems and plots the data as a function of simulation time.

Table 5: Performance Metrics for Disruption Scenarios

Hazardous State	Safety Control	Affected Performance Metrics
Solar PV arrays are covered by dust (HS100)	Ability to remove dust from solar PV arrays (SC798)	Solar power output Solar irradiance
	Ability to activate secondary power generation system (SC11)	Power supplied to all subsystems requesting Solar power output Nuclear power output
	Ability to activate battery power as power generation source (SC822)	 Currently stored energy Maximum available energy storage Power supplied to all subsystems Solar power output Nuclear power output
Nuclear radiator panels are covered by dust (HS213)	Ability to remove dust from nuclear radiator panels (SC799)	1. Nuclear power output
	Ability to activate secondary power generation system (SC11)	Power supplied to all subsystems requesting Solar power output Nuclear power output
	Ability to activate battery power as power generation source (SC822)	Currently stored energy Maximum available energy storage Power supplied to all subsystems Solar power output Nuclear power output
ECLSS radiator panels are covered by dust (HS216)	Ability to remove dust from ECLSS radiator panels (SC785)	1. Secondary loop fluid temperature
Paint degradation on ECLSS radiator panels (HS217)	Ability to repair paint damage on ECLSS radiator panels (SC786)	Secondary loop fluid temperature
Habitat structural mechanical layer is breached (HS127)	Ability to repair the structural mechanical layer (SC795)	Interior environment temperature Interior environment pressure Hole radius Total volume removed

	Ability to regulate temperature of interior environment (SC823)	1. Interior environment temperature
	Ability to regulate pressure of interior environment (SC824)	Interior environment pressure
Habitat structural protective layer is breached (HS38)	Ability to repair the structural protective layer (SC796)	1. Interior environment temperature 2. Interior environment pressure 3. Volume of hole in regolith (per panel) 4. Number of SPL elements damaged 5. Damage level (per panel)
Solar PV arrays are damaged (HS41)	Ability to replace solar PV arrays (SC799)	Solar power output Solar irradiance
Nuclear radiator panels are damaged (HS134)	Ability to replace nuclear radiator panels (SC801)	1. Nuclear power output
Solar power distribution converters are damaged (HS227)	Ability to repair individual power converters (SC802)	 Power output of converter 1 Power output of converter 2 Power output of converter 3 Power output of converter 4 Power output of converter 5 Power output of converter 6
Solar power distribution main generation bus is damaged (HS228)	Ability to repair main power generation bus (SC803)	1. Power output of the main generation bus
Energy storage system is damaged (HS35)	Ability to repair battery cells (SC355)	Number of battery cells available Currently stored energy Maximum available energy storage
Solar power distribution converters are damaged (HS227)	Ability to repair individual power converters (SC802)	1. Power output of converter 1 2. Power output of converter 2 3. Power output of converter 3 4. Power output of converter 4 5. Power output of converter 5 6. Power output of converter 6

Solar power distribution main bus is damaged (HS228)	Ability to repair main power generation bus (SC803)	1. Power output of the main generation bus
Energy storage system is damaged (HS35)	Ability to repair battery cells (SC355)	Number of battery cells available Currently stored energy Maximum available energy storage
Open fire in interior environment (HS71)	Ability to extinguish active fire in interior environment (SC797)	Interior environment temperature Interior environment pressure
ECLSS air tank has a leak (HS219)	Ability to repair piping between the air tank in ECLSS pressure system and interior environment (SC788)	Air tank pressure Upstream flow rate Downstream flow rate
ECLSS compressor performance is decreased (HS222)	Ability to repair the compressor in ECLSS thermal system (SC791)	Requested RPM for compressor Actual RPM of compressor
Sensor(s) in Subsystem X* experience sensor drift	Ability to repair sensor drift in sensor(s) in Subsystem X*	
Sensor(s) in Subsystem X* fail	Ability to repair failed sensor(s) in Subsystem X*	
Sensor(s) in Subsystem X* experience simultaneous drift and failure	Ability to repair sensor(s) in Subsystem X*	
ECLSS fan is nonfunctional (HS218)	Ability to repair fan damage in ECLSS pressure system (SC787)	1. Flow rate of the fan
ECLSS air supply valve is malfunctioning (HS220)	Ability to repair the air supply valve in ECLSS pressure system (SC789)	1. Downstream flow rate

ECLSS evaporator has air side leak (HS223)	Ability to repair the evaporator air side leak in ECLSS thermal system (SC792)	Upstream flow rate Downstream flow rate
ECLSS pressure system consumes excess power (HS221)	Ability to repair power consumption fault in ECLSS pressure system (SC790)	
ECLSS thermal system consumes excess power (HS225)	Ability to repair power consumption fault in ECLSS thermal system (SC794)	
ECLSS heater performance is decreased (HS224)	Ability to repair the heater in ECLSS thermal system (SC793)	Requested heat Actual heat provided

^{* =} General or any system

Data Inspector

To access the data inspector, open the MATLAB Simulink file titled MCVT_v6.slx. The Simulink window will appear and in the top toolbar, there is a data inspector icon. Click on that icon, and the data inspector window will appear as seen in Figure 7. On the left side of the window, all output variables logged in the data inspector are listed with a check box next to them. You can use the Filter Signals bar to look for the relevant performance metrics listed in Table 6 that you want to view for your simulations.

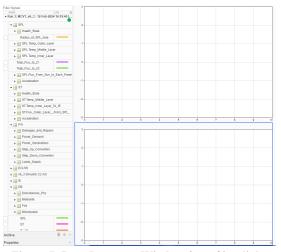
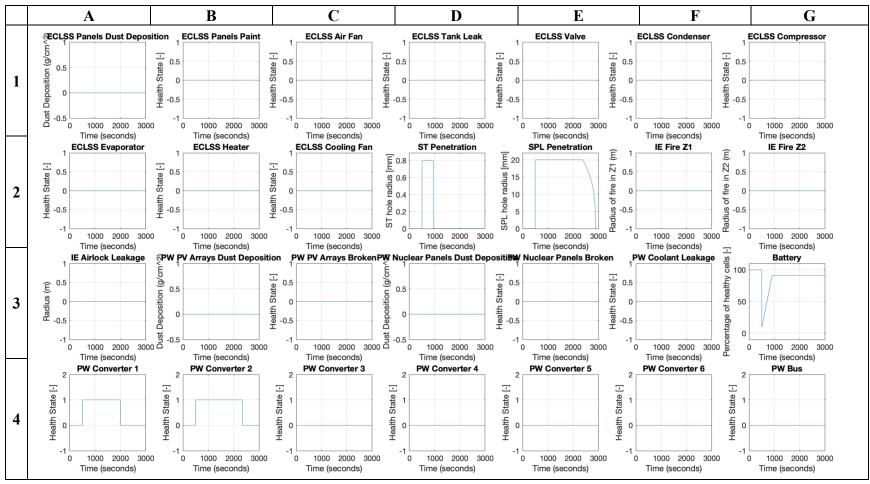


Figure 7: Data Inspector Window from Simulink

Example Simulations


Example 1: Micrometeorite Impact

Description: In the first scenario, a micrometeorite at IL 5 hits the habitat on zone 2, at coordinates [-0.54,0.54] m, damaging ST and SPL, together with converters 1 and 2 and 90% of the available battery cells. Converters 1 delivers the generated nuclear power to the smart power distribution, and converter 2 delivers the generated solar power. The simulation happens during a lunar night; therefore, no solar power is generated. Nuclear generation is fully working, and the energy storage is charged at 20% of the maximum storage.

```
Command Window
 -[1/6] Input File Loaded (0.2414 sec)
 -[2/6] Habitat Design Input File Loaded (0.0020364 sec)
 -[3/6] Simulation Parameters Loaded (0.0011086 sec)
 -[4/6] Subsystems Parameters Loaded (4.1344 sec)
 PW Deterministic Case
 ECLSS Deterministic Case
 EE Nominal dust acumulation rate: [0 0 0] (q/cm^2/s)
 Fan dust acumulation rate: 0 (g/cm^2/s)
 Start angle of the Sun: 90 (deg)
 Total simulation time: 120 (sec)
 Meteorite Disruption Scenario
                 IL: 5
        impactStart: 10
        coordinates: [-0.5400 -0.5400]
     holeRadius_IL4: 8.0000e-04
     holeRadius IL5: 0.1000
       dustDuration: 30
      dustAccumRate: [0 15 0]
     impactDuration: 1
 -[5/6] MCVT Simulation in Progress...
```

Figure 8 provides information on the health state of the habitat components.

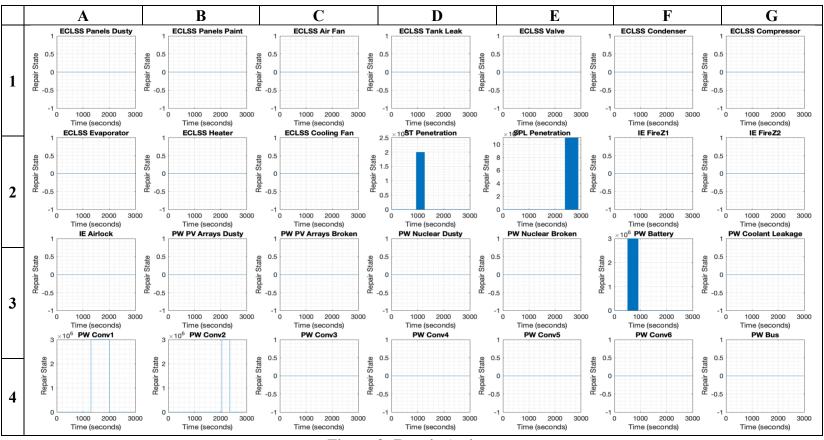

- 2D and 2E show that in this scenario, ST and SPL are pierced by the micrometeorite, resulting in a hole in ST and SPL.
- 4A, 4B, and 3G show that the debris caused by the micrometeorite impact damage some of the components in the PW system. including power converter 1, power converter, 2, and some of the battery cells, respectively.
- All the other signals are zero because the other habitat components are not affected by the micrometeorite impact.
- As long as these signals are zero the corresponding components are healthy, but the battery shows the percentage of the healthy (not damaged) number of the batteries.
- 3G shows that after the batteries are repaired, the final percentage of the healthy batteries is less than 100%.

Figure 8: Health States

Figure 9 shows the agent's interventions. Each component has a unique code associated to the agent repair action shown on y-axis.

- **3E** shows that the battery cells are the first component to be repaired by the agent. The repair order is set by the user before the simulation starts.
- 2D show that the ST is being repaired as second. The hole size is 0.8 mm, and it is patched in 500 seconds. The repair is instantaneous, and once the agent patches the hole, its radius goes to zero. After that, the agent repairs converter 1 and 2 (4A and 4B, respectively).
- 2E show that SPL is the last component to be repaired.

Figure 9: Repair Actions

Figure 10 is demonstrating all the interventions on one figure, where the repairs are done this order; battery cells, ST, PW converter 1, power converter 2 and finally SPL.

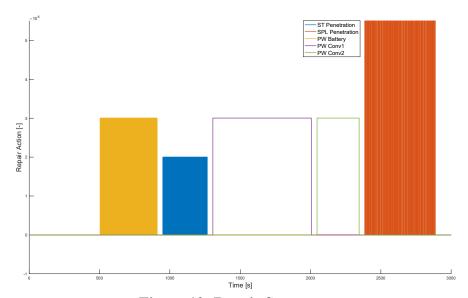


Figure 10: Repair Sequence

Figure 11 shows the PW loads and output of the converters. In particular, the ECLSS load.

- 1A shows the sum of ECLSS heating and cooling loads. At 800 seconds, the air leaking out the habitat trough the puncture hole causes habitat temperature and pressure decrease. Therefore, the ECLSS thermal and pressure consumption is higher.
- 1B represents the monitoring loads, which are constant since the sensor power consumption is constant.
- 1C shows the power consumed by housekeeping loads and scientific instruments. In this simulation, the housekeeping and scientific instruments loads are considered constant.
- 1D shows the pump power consumption, which is zero because the IE is not being cooled.
- 1E shows the generated nuclear power, which is constant. The generated solar power is shown in 1F, and it is slightly increasing because of the sun moving through the day.
- 2A shows the currently stored energy plot, which compares the total storage capacity with the current one. In the beginning, the batteries are being charged. Then when the micrometeorite impact happens, the temperature drops and causes the energy storage efficiency to decrease. This causes a drop of both maximum and current available power. The energy storage then increases again after the repair action, then decrease since is being used because the converters one and two are damaged. Then increase again since the PW can rely again on nuclear power.
- 2B shows the battery energy storage, which starts to discharge as soon as the nuclear power and solar power converters are damaged, since the converters are necessary to route the power to the habitat subsystems.
- 2C shows the dumping loads, used to control the generated nuclear power which cannot be delivered through the converter and then needs to be dumped.
- 2D shows the sum of the power generated by the nuclear, solar and the power stored into the PW energy storage.
- **2E and 2F** show the output of converter 5 and 6. Converter 5 delivers power to the monitoring loads, and converter 6 delivers power to housekeeping loads. Output of power converter 6 drops when the converters 1 and 2 are damaged, because the SPD stops powering instruments to save power for ECLSS.
- The damage of converters 1 and 2, is confirmed by the subplot representing Output of step-up converters 1 and 2, which become zeros as soon as the meteorite impact happens. Output of step-up converter 3, (3C) is the same as discharge power, since after the meteorite impact the only source of power is the PW energy storage. Because of the temperature drop caused by the ST puncture, the stored energy efficiency decreases. About the step-down converters, necessary to power the system loads, the output of converter 4, (3D) is the same as ECLSS load, (1A) since this is the converter which delivers the power to ECLSS system, and the output of converter 5, (3E) is constant since the monitoring loads are constant. The output of power converter 6, (3F) drops when the converters 1 and 2 are damaged, because the SPD stops powering instruments to save power for ECLSS. Once the converters are repaired, the converter 6 is back to deliver the power to accessory loads.

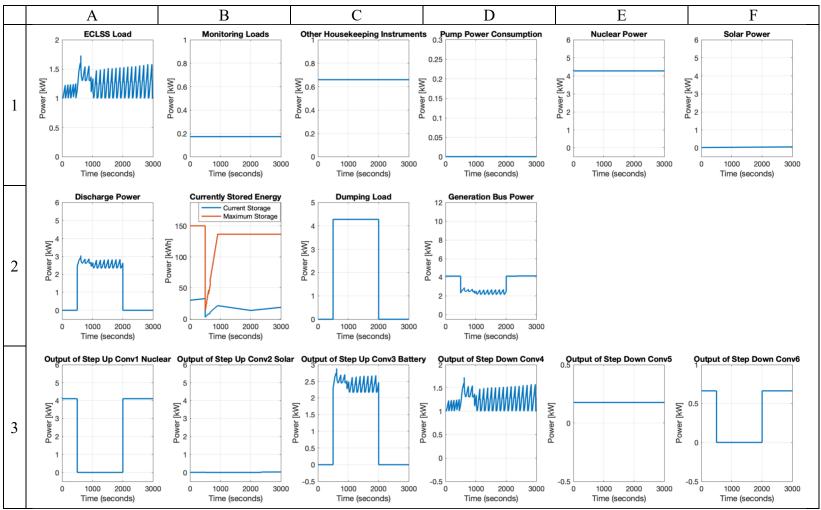
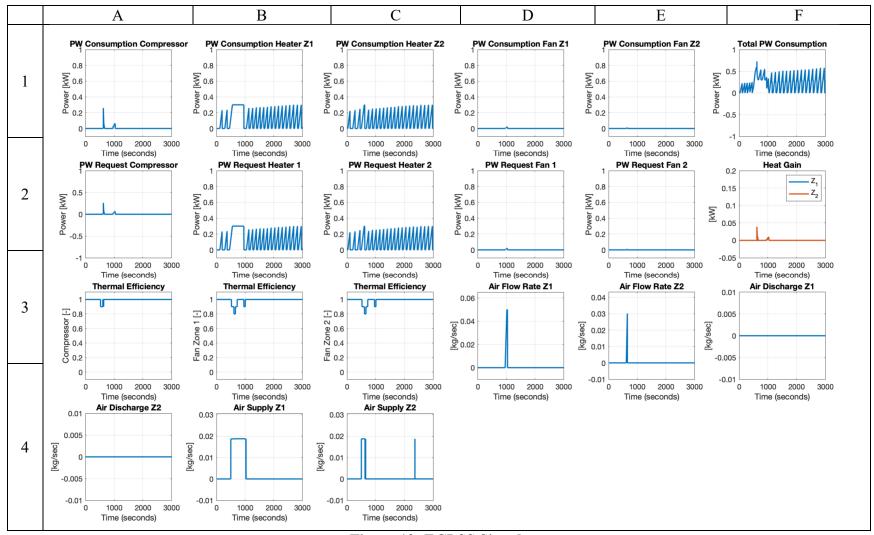



Figure 11: PW Signals

The plots in Figure 12 pertain to the ECLSS power consumption and air supply.

- 1A shows the power consumed by the ECLSS compressor. The power request peaks when the temperature is at its minimum. This is because the temperature affects the compressor efficiency. Here the ECLSS power requested and power consumed are the same, because PW can provide energy to ECLSS systems.
- 1B and 1C present the power consumed by ECLSS heaters in zone 1 and zone 2. The power request by the heater in zone 1 is higher, because the temperature in zone 1 stays in the unsafe zone for more time (the micrometeorite impact happens in zone 1).
- 1D and 1E show the power consumed by ECLSS ventilation fans.
- 1F shows the total ECLSS power consumption, which is the sum of power consumed by ECLSS heater, compressor, and fans.
- 2A, 2B, 2C, and 2D illustrate the ECLSS power request. In this simulation, the ECLSS power request equals the ECLSS power consumption. This is because the available power is enough to power the ECLSS loads.
- **2E** shows the heat gain, which is the heat generated by the PW components. For example, the energy storage dissipates heat into the IE when working. This is an example of heat gain.
- 3A, 3B, and 3C show the efficiency of ECLSS compressor and fans. In response to the temperature decrease, the fans and compressor efficiency decrease as well. This causes a higher power demand by the compressor and fans, 2A, 2D, and 2E.
- 3D and 3E are about the air flowing into zone 1 and zone 2. The ECLSS pressure control injects air when the IE pressure falls below the supply set point, shown in red in 1A and 1B.
- 3F and 4A illustrate the amount of air that is vented out the IE in case the pressure exceeds the discharge set point, shown in blue in 1A and 1B.
- 4B and 4C are about the air injected into the habitat when the IE pressure falls below the supply set point, shown in red in 1A and 1B.

Figure 12: ECLSS Signals

Figure 13 shows the temperature and pressure inside the habitat, together with the thermal loads and the air circulation.

- 1A and 1B demonstrate the pressure in zone 1 and 2, which is decreasing right after the micrometeorite impact, and is restored to the nominal value only after SPL and ST are repaired.
- 1C and 1D shows the temperature in zone 1 and 2 is decreasing as well as soon as the micrometeorite impacts on the habitat, because of the hole in ST and SPL. The pressure is restored after SPL and ST are repaired by agent.
- 1E show the average wall temperature for zones 1 and 2. In this simulation, the air temperature is restored quickly and the wall temperature does not present any changes. This is because the wall temperature is increasing slower than the air temperature because of the high thermal inertia.
- **1F** show the heat gain due to the components present in zone 1 and 2. In particular, PW batteries and fan add heat to the zone 1. Compressor and cooling fan add heat to zone 2 when operating.
- 2A presents the heating load, which is positive because heat is provided to the system by the ECLSS heaters to compensate the temperature drop due to the micrometeorite puncturing SPL and ST.
- 2B shows the cooling load, which is considered positive as heat is removed from the habitat.
- 2C is about the overall thermal load, obtained by the difference between heating and cooling thermal load. In this case, since the heater thermal load is positive and greater than the cooling load, the overall thermal load is positive as well.
- 2D shows the wall temperature flux, due to convection. A positive heat flux means that the wall temperature is higher than the IE temperature, and vice versa.
- 2E shows the heat flux due to fire. In this simulation, this signal is zero because no fire is initiated.
- 2F is about the heat flux between IE and wall, considering a heat flux of the fire.
- 3A shows the pocket door position. After the meteorite impact happens, initially the pocket door dividing the two zones stays open. At 700 seconds is closed, and this causes the pressure in zone 2 to go back to normality right after (1B). The same for the temperature in zone 2, shown in 1D. About the pressure in zone 1, shown in 1A, it takes more time to recover, since the air leaks out the habitat until the agent repairs it.
- 3B shows that the air circulating in Z1 and Z2 is different than zero when the leak starts. This is because the ECLSS pressure controller commands the air injection into the two habitat zones.
- 3C shows the air flow between the two zones. In this case, there is no air flow between the two zones.
- 3D shows the air leaking from the habitat IE. Air leaking is decreasing during the time because of the pressure decrease, and the air supply, shown in 3E. In this simulation, once the leak is detected, pressure controller commands maximum supplying of air in zones 1 and 2 to quickly reestablish the pressure.
- **3F** shows the discharge into the exterior environment. Air discharge can be due to nominal habitat air leaks or depressurization events caused by micrometeorite impact.

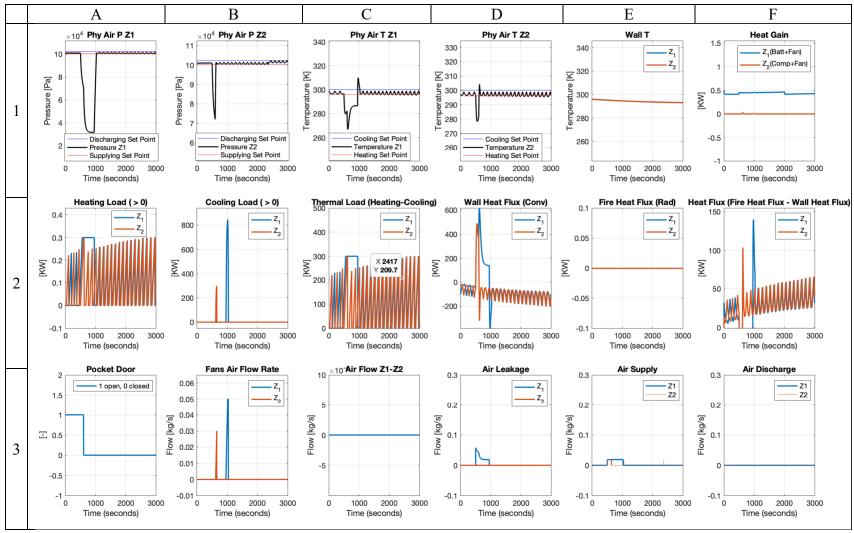


Figure 13: IE Signals

- 1A is about the temperature of the ST middle layer, which is between the inner layer, shown in 2A, and the outer layer, which is considered to be the SPL inner layer as well.
- 1B, 1C, 1D,1E,1F, 2B, 2C, 2D,2E,2F, 3B, 3C, 3D,3E,3F shows the acceleration of the habitat ST at different locations and directions.
- 3A is about the flux between the ST outer layer and the SPL inner layer. A positive flux means that SPL is colder that ST.

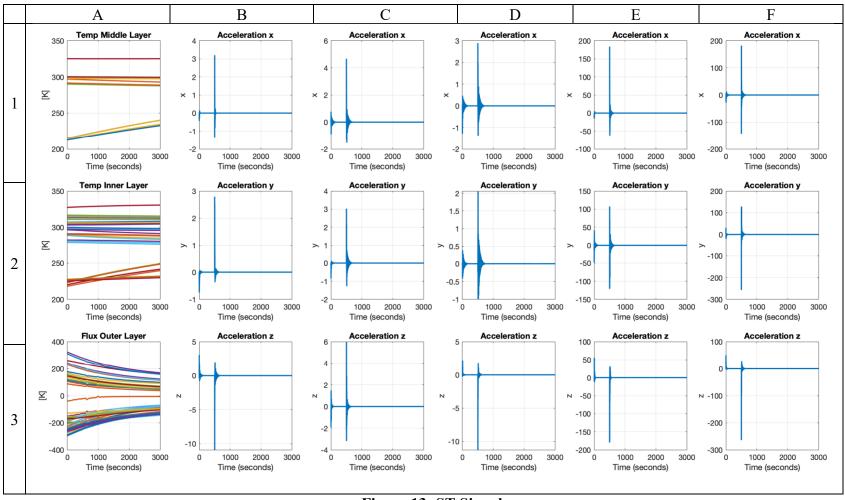
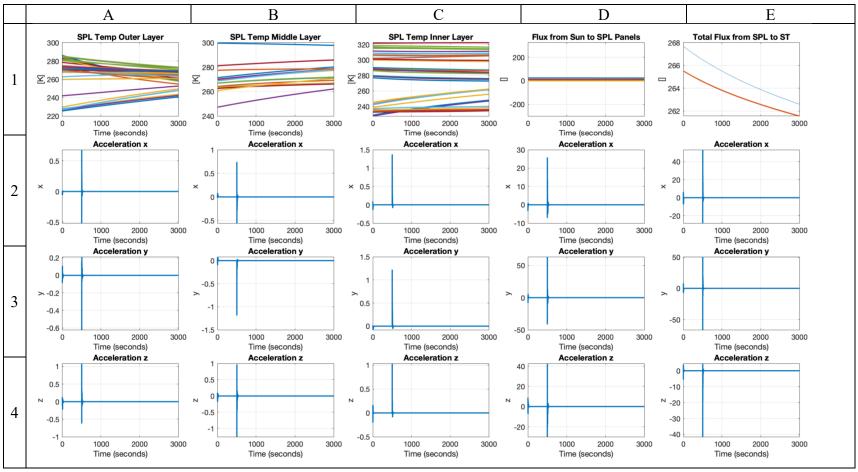
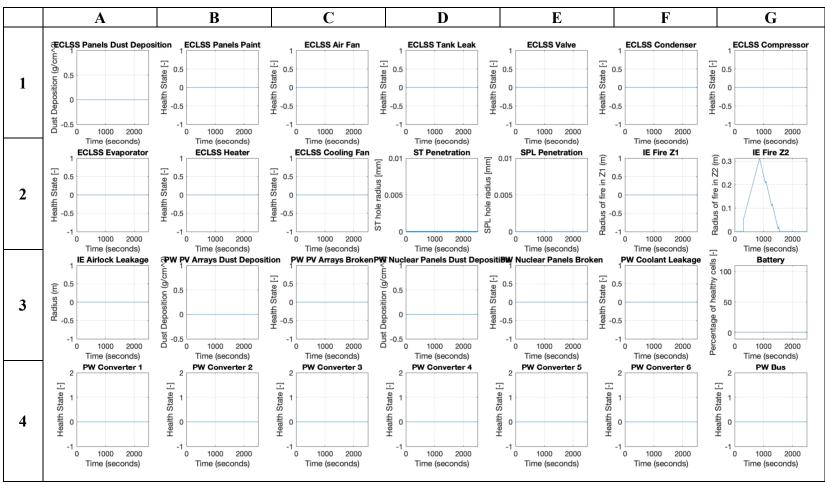


Figure 13: ST Signals

- 1A, 1B, and 1C are about the temperature of the SPL outer layer, middle layer and inner layer, respectively.
- 1D shows the flux from sun to external SPL. A positive flux means that the sun is heating a panel.
- 1E represents the flux between SPL and ST. A positive flux means that the SPL temperature is greater that ST and vice versa. Blue line represents zone 1, and the orange line is zone 2.
- 1D, 1E, 2A, 2B, 2C, 2D, 2E, 3A 3B, 3C, 3D, and 3E show the acceleration of the habitat ST at different locations and directions.




Figure 14:SPL Signals

Example 2: Fire

In this simulation, an IL 5 fire disruption is initiated in habitat zone 2. The fire will affect pressure, temperature and consequentially ECLSS and PW efficiency.

```
Command Window
  -[1/6] Input File Loaded (0.12987 sec)
  -[2/6] Habitat Design Input File Loaded (0.0003599 sec)
  -[3/6] Simulation Parameters Loaded (0.0003926 sec)
  -[4/6] Subsystems Parameters Loaded (0.96387 sec)
  PW Deterministic Case
  ECLSS Deterministic Case
  EE Nominal dust acumulation rate: [0 0 0] (g/cm^2/s)
  Fan dust acumulation rate: 0 (g/cm^2/s)
  Start angle of the Sun: 90 (deg)
  Total simulation time: 120 (sec)
  Fire Disruption Scenario
                     IL: 5
                 tStart: 20
             tDetection: 100
      polar coordinates: [0.7000 180]
            coordinates: [-0.7000 0]
  -[5/6] MCVT Simulation in Progress...
```

- Figure 15 shows the health states of all the damageable components. Health state changes are initiated by disruptions.
- 2G shows that the radius of the fire increases in a linear manner until the agent starts to extinguish it. In this version of HabSim, we assume that delay between detection and start of agent action is neglectable. Once the fire is detected, the repair action start, so the fire radius starts decreasing. The fire suppression takes four steps so in between there is a slight increase in the fire radius.
- All the other figures. show a zero-value signals as in this scenario the fire starts far from ECLSS and PW components, and it does not spread enough to reach them during the whole simulation. Therefore, all the other components have a health state value equal to zero. The battery health state is at 100% and indicates that all the battery cells are healthy.

Figure 15: Health States

Figure 16 shows the agent actions used to repair the damaged components within HabSim.

• 2G shows that it takes four steps to extinguish the fire which is consistent with the results demonstrated in Fig. 15 2G.

• All the other Figs. show a zero-value signal as no other intervention is necessary.

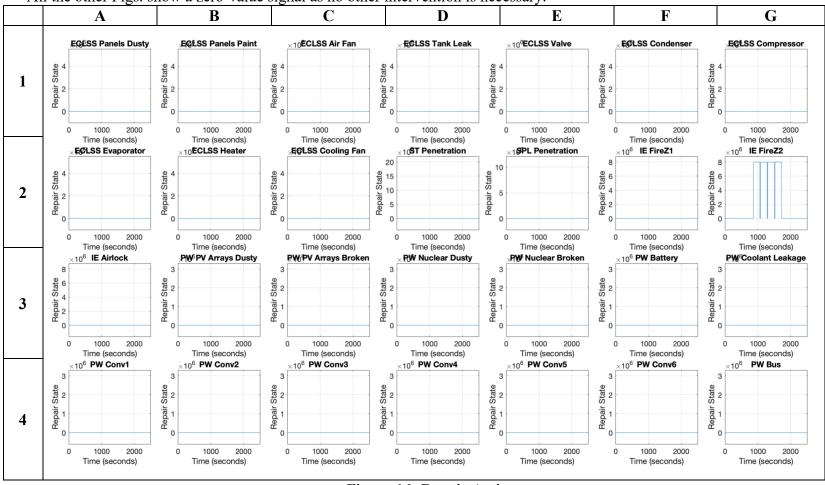


Figure 16: Repair Actions

Figure 17 shows the power signals.

- 1A demonstrate that ECLSS load follows the trend observed on the radius of the fire in Fig. 15 2G.
- **2B** demonstrate that at time = 800 seconds, the stored energy in the batteries decreases by 40% as the efficiency of the batteries is a function of the environmental temperature
- 1C shows the PW loads related to housekeeping instruments. For example, fridges, microwaves and all the appliances needed by the habitat crew during the crewed state.
- 1D shows the PW loads related to ECLSS system pumps.
- 1E shows the generated nuclear power. It is constant to 4.3 kW.
- 1F shows the generated solar power. In this case we are considering a lunar night, therefore there is no generated solar power.
- 2A presents the discharge power, which is the power that is drawn from the PW batteries when batteries are the only available power source. In this case, since nuclear power is available as well, the PW batteries are charging, as can be seen in 2B.
- 2B demonstrates that the generated nuclear power is used to charge the batteries. This explains the increase in current stored energy.
- 2C shows the nuclear power dumping loads. Dumping loads are used to channel the nuclear power that cannot be correctly delivered to the power management system.
- 2D shows the total generated power. In this case, the generated power is equal to the generated nuclear power, shown in 1D.
- 3A demonstrates that the output of the step-up converter 1 is equal to the generated nuclear power, shown in 1E.
- 3B shows that the output of step-up converter 2 is zero, same as generated solar power presented in 1F.
- 3C shows that the output of the converter 3 is zero, since in this scenario the batteries are not being used.
- **3D** shows that the output of stepdown converter 4 is equal to ECLSS power request. This is because the converter 4 delivers power supply for ECLSS heating and cooling systems.
- 3E shows that the output of stepdown converter 5 is equal to ECLSS monitoring loads power request.
- 3F demonstrates that the output of the converter 6 is zero is equal to zero similar to the housekeeping loads demonstrated in 1C.

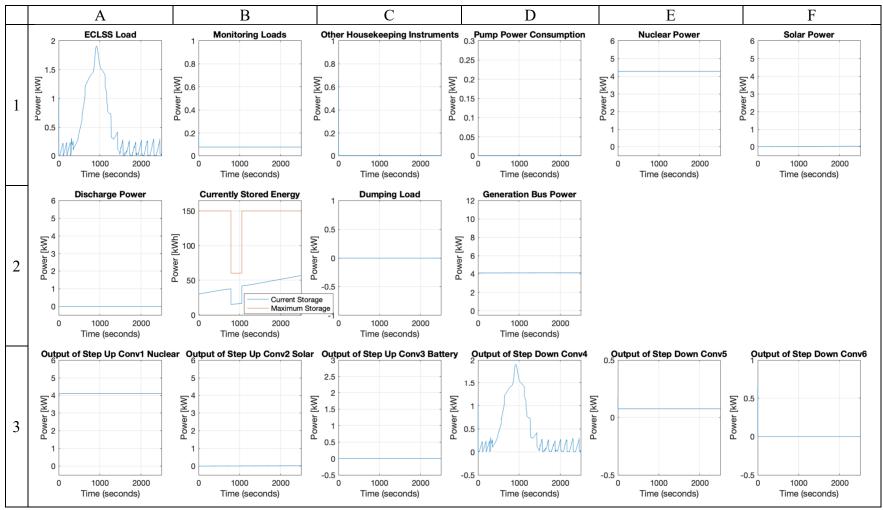
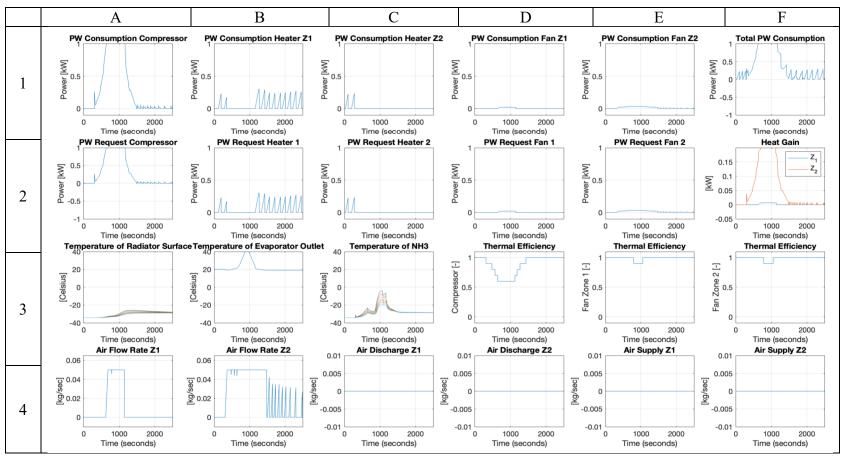



Figure 17: PW Signals

Figure 18 shows the ECLSS signals.

- 1A shows the power consumed by the ECLSS compressor. The ECLSS compressor efficiency decreases with the temperature, as in 3D.
- 1B shows the power consumed by the ECLSS heater in zone 1. The heater is not activated when the fire is spreading and being suppressed.
- 1C illustrates the power consumed by ECLSS heaters in zone 2. The heater is active in the beginning of the simulation to keep the temperature within the required range shown in Fig. 19 1D.
- 1D and 1E shows the power consumed by ECLSS fans for zone 1 and 2, respectively. The fans efficiency decreases with the temperature, as shown in 3D and 3E.
- 1F is about the total ECLSS power consumption. It is equal to the sum of power consumed by compressor, heaters and fans.
- 2A, 2B, 2C, 2D, and 2E shows the power requested by ECLSS components. In this simulation, power request and consumption are the same. This means that the generated and stored energy is enough to power all the ECLSS loads.
- 2F shows the heat gain for zone 1 and 2. The heat gain is the heat generated by all the powered components and crew. For example, heat generated by a computer is considered heat gain. Heat gain increases the load of ECLSS thermal and pressure management
- 3D shows the thermal efficiency of the ECLSS compressor. The thermal efficiency decreases with temperature.
- 3E and 3F present the thermal efficiency for fan used to recirculate air in zones 1 and two.
- 4A and 4B shows the air flow used to cool zone 1 and 2.
- 4C and 4D shows the air vented out the habitat in case the pressure exceeds the discharge limit.
- 4E and 4F shows the air injected into the habitat when the pressure drops below the supply setpoint.

Figure 18: ECLSS Signals

Figure 19 shows the internal habitat signals.

- 1A and 1B show the pressure for habitat zone 1 and 2, respectively. The discharging set point, in blue in 1A and 1B is the higher allowed pressure before the ECLSS pressure control vents out the air to the exterior environment. The supply set point, in red in 1A and 1B, is the minimum allowed pressure before the ECLSS pressure control commands the air injection into the habitat zone.
- 1C and 1D show the temperature for habitat zone 1 and 2, respectively. The cooling set point, in blue in 1C and 1D is the higher allowed temperature before the ECLSS temperature control activates the ECLSS cooling system. The heating set point, in red in 1C and 1D, is the minimum allowed temperature before the ECLSS thermal commands the heater activation.
- 1E show the average wall temperature for zones 1 and 2. In this case, the fire spreading in zone 2 causes an increase in wall temperature. The wall temperature is increasing slower than the air temperature because of the high thermal inertia.
- **1F** show the heat gain due to the components present in zone 1 and 2. In particular, PW batteries and fan add heat to the zone 1. Compressor and cooling fan add heat to zone 2 when operating.
- 3A shows the heating load, which indicates the heat provided to the IE. In this simulation, heat is provided before and after the fire spreading and suppression. The peaks in the signals are due to the activation and deactivation of the heaters. When the temperature is equal to the cooling setpoint in 1C and 1D, the heater is deactivated, and the heating load decreases.
- 3B shows the cooling load, which indicates the cooling activation.
- **3C** shows the difference between heating and cooling loads.
- **3D** is about the heat flux for heat due to convection between the habitat wall and IE. A positive heat flux means that the wall is providing heat to the IE. This happens when the wall temperature is higher than the IE temperature. In this simulation, the IE temperature is higher than the wall one, because of the fire. Therefore, the heat flux due to convection is negative.
- 3E is about the heat flux generated by fire. In this case, since a fire is present, the fire flux is different from zero.
- **3F** is the difference between heat flux generated by fire and heat flux from wall to interior environment. A positive heat flux means that the wall is providing heat to the IE.
- 4A shows the pocket door position. The pocket door divides IE zone 1 from IE zone 2. It can be closed to separate the two zones.
- 4B shows the fans flow rate. In particular, the orange line is about the air flowing in zone 1, and the blue line is about zone 2.
- 4C shows the flow between the two zones. In this simulation there is no zone ventilation.
- 4D shows the air leaking from the habitat sealings. In this case, the leak has been set to zero (no air leak into the external environment)
- 4E is about the air supplied to the habitat, to compensate pressure leaks due to sealings degradation or micrometeorite impacts.
- 4F shows the air discharged into the exterior environment when the pressure exceeds the setpoint.

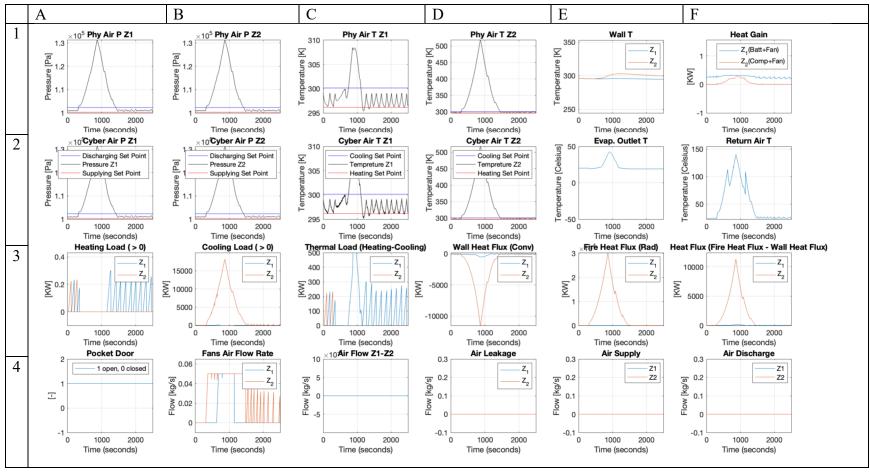


Figure 19: IE Signals

- 1A is about the temperature of the ST middle layer, which is between the inner layer, shown in 2A, and the outer layer, which is considered to be the SPL inner layer as well.
- 1B, 1C, 1D, 1E, 1F, 2B, 2C, 2D, 2E, 2F, 3B, 3C, 3D, 3E, and 3F shows the acceleration of the habitat ST at different locations and directions.
- 3A is about the flux between the ST outer layer and the SPL inner layer. A positive flux means that SPL is colder that ST.

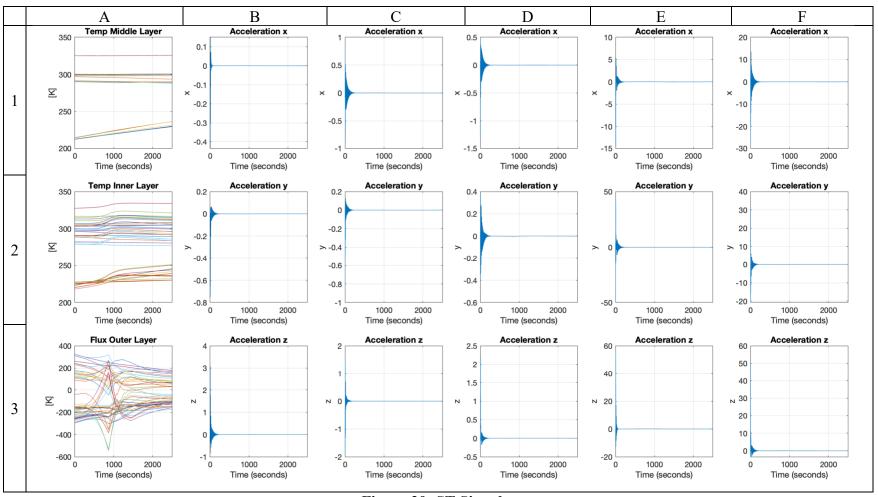


Figure 20: ST Signals

- 1A, 1B, and 1C are about the temperature of the SPL outer layer, middle layer and inner layer, respectively.
- 1D shows the flux from sun to external SPL. A positive flux means that the sun is heating a panel.
- 1E represents the flux between SPL and ST. A positive flux means that the SPL temperature is greater that ST and vice versa. Blue line represents zone 1, and the orange line is zone 2.
- 1D, 1E, 2A, 2B, 2C, 2D, 2E, 3A 3B, 3C, 3D, and 3E show the acceleration of the habitat ST at different locations and directions.

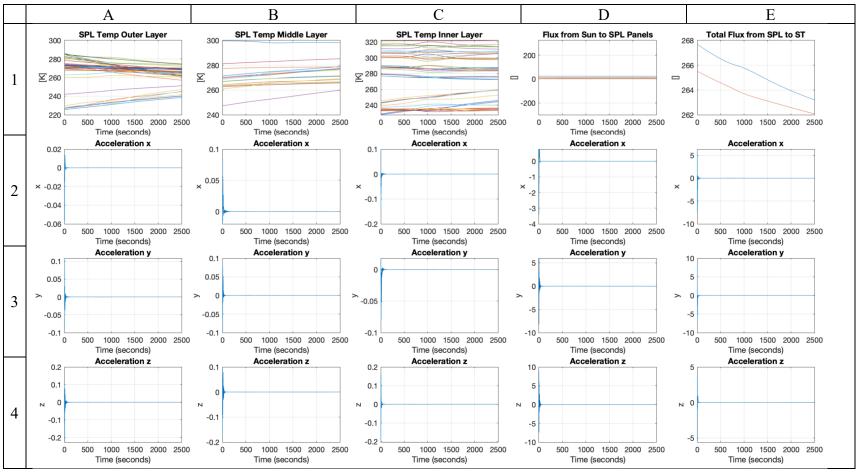


Figure 21: SPL Signals

Old Example

MCVT v5 Manual example:

 $\underline{https://docs.google.com/document/d/1J36dAKIitFI5Gj17hXQPpkgAXzvV4GsGWcKNeW2CJF8/edit?usp=sharing}$

Appendix

Overview of Core Systems

Subsystem Descriptions

HabSim v6.3 includes physics-based models with damageable/repairable subsystem properties, including a 3-dimensional world and the associated models, power systems, robotic agents, the pressure, and thermal control aspects of the environmental control life support system (ECLSS), and the fault detection and health management. The simulation also considers both a crewed configuration as well as select aspects of dormant conditions.

HabSim provides the capability to explore techniques and algorithms needed to extract the necessary amount of actionable information for repair and recovery through monitoring and embedded intelligence. To achieve these goals, HabSim was framed in a system-of-systems context, where each component is a constituent system which can operate independently, while their combination establishes the extraterrestrial habitat as an integrated complex system. Doing so delivers both anticipated (and potentially unanticipated) emergent behaviors and allows for the emergence and propagation of performance effects due not only to the disruptions and failures, but also the implemented safety controls.

The subsystems included in the HabSim architecture can be broadly classified into three groups:

- 1. **Electro-Mechanical Systems (EMS):** those subsystems which directly propagate the physics of the habitat in both its operational condition as well as in its various hazardous states. The systems include a protective regolith layer, a structural system, an environmental control and life support system (ECLSS), and a power generation and distribution system.
- 2. **Health Management Systems (HMS):** those subsystems which primarily provide system evaluation and decision-making capabilities, but also include a physical aspect. The systems include an internal and interplanetary communication network, a command & control system, and a data repository.
- 3. **Agent Systems:** a single robotic agent that acts as the interface between the EMS and HMS subsystems, playing a significant role in each as it affects the physical changes in the habitat according to the direction of the HMS.

The HabSim subsystems each have a corresponding number in Simulink, which is used for the output data structure. Table 6 provides the number associated with each subsystem for your reference. The configuration parameters for each subsystem can be found in the SysFiles folder of the integrated v6.3 package. Note that this folder also contains communication, FDD (Fault Detection and Diagnostic) and sensor parameters (the user does not change these parameters).

Table 6: Core Subsystem and its Corresponding Number in Simulink

Subsystem Number	Subsystem
1	Health Management
2	Structural
3	Power
5	ECLSS (Environmental Control and Life Support System)
6	Agent
8	Interior Environment
9	Disturbances
11	Structural Protective Layer

Simulink Architecture

The Simulink architecture of these core systems is shown in Figure 8 below.

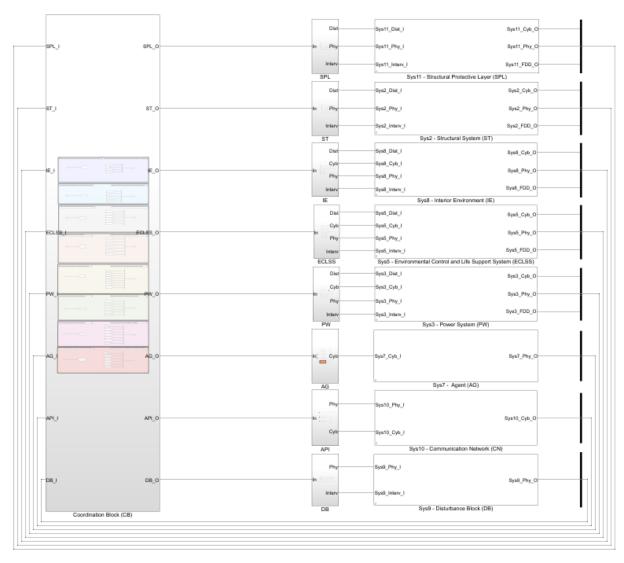


Figure 8: Simulink Architecture of MCVT Subsystems

List of Disruption Scenarios

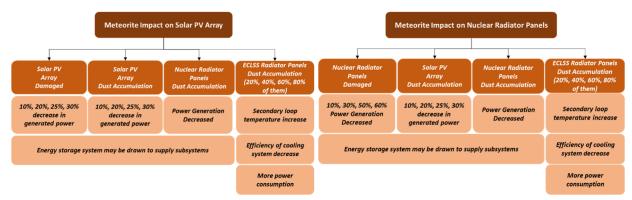


Figure 9: Meteorite Impact on Solar PV Arrays (IL 2,3,4,5) (left) and Meteorite Impact on Nuclear Radiator Panels (IL 2,3,4,5) (right)

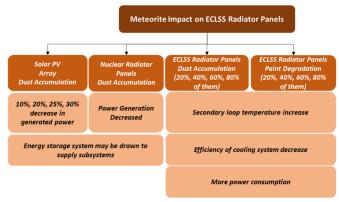


Figure 10: Meteorite Impact on ECLSS Radiator Panels (IL 2,3,4,5)

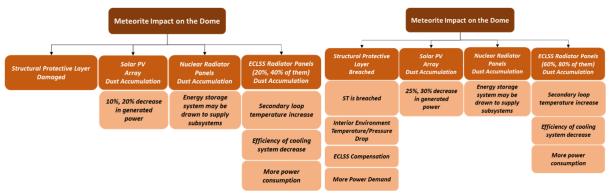


Figure 11: Meteorite Impact on Structure (IL 2,3) (left) and (IL 4,5) (right)

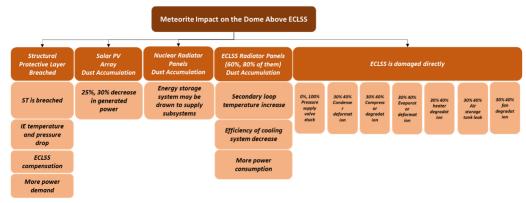


Figure 12: Meteorite Impact on Structure, Above ECLSS (IL 4,5)

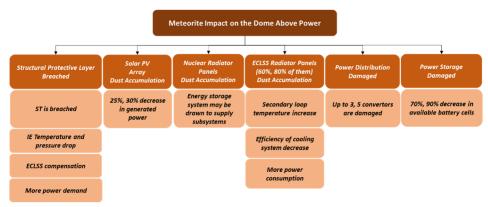
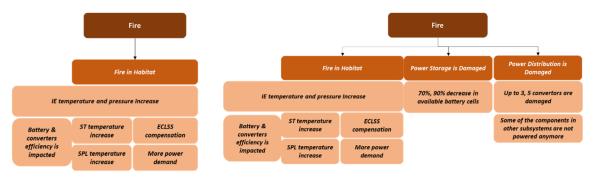



Figure 13: Meteorite Impact on Structure, Above Power (IL 4,5)

Note: Damage is due to the heat, nothing is on fire

Note: Damage is due to the heat, nothing is on fire

Figure 14: Fire in the Interior Environment in Z1 close to Power (IL 2,3) (left) and (IL 4,5) (right)

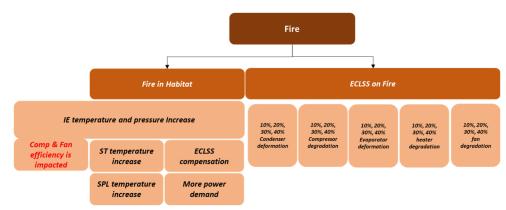


Figure 15: Fire in the Interior Environment in Z2 close to ECLSS (IL 2,3,4,5)

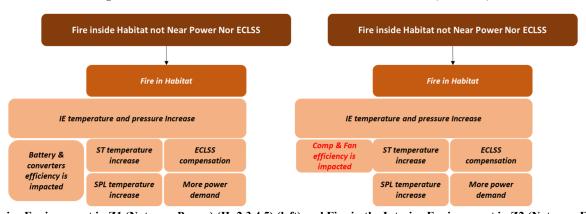


Figure 16: Fire in the Interior Environment in Z1 (Not near Power) (IL 2,3,4,5) (left) and Fire in the Interior Environment in Z2 (Not near ECLSS) (IL 2,3,4,5) (right)

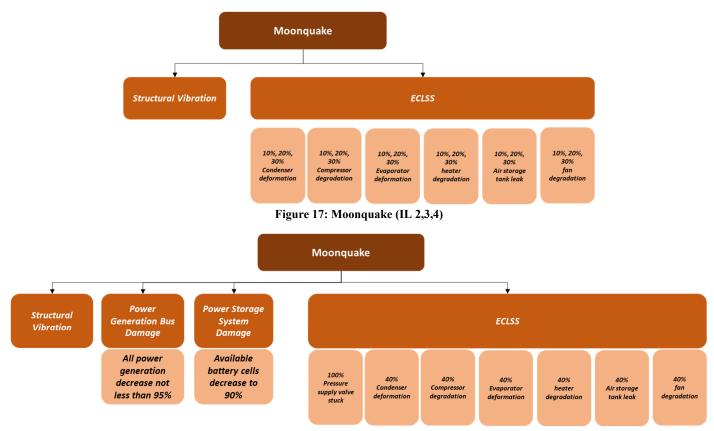


Figure 18: Moonquake (IL 5)

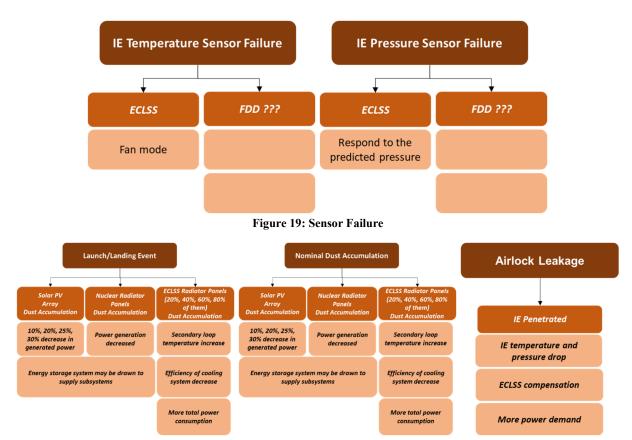


Figure 20: Launch/Landing Event (left), Nominal Dust Accumulation (middle), and Airlock Leakage (IL 2,3,4,5) (right)

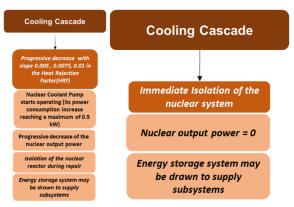


Figure 21: Cooling System Cascade (IL 2,3,4) (left), Cooling System Cascade (IL 5) (right)

Data Output

Table 6 provides all available output data for the user. The variable names can be copied from the table and used when plotting. See any of the MCVT_Plot_Data_<NAME>.m files for how to use the model variable names to access the correct data and plot.

Table 6. All Subsystem Output Variables

Sys11_out	Description
Sys11_out.Temp_Outer_Layer	Temperature of the outer SPL layer
Sys11_out.Temp_Middle_Layer	Temperature of the middle SPL layer
Sys11_out.Temp_Inner_Layer	Temperature of the inner SPL layer
Sys11_out.Total_Flux_to_Z1	Total Flux to SPL Z1
Sys11_out.Total_Flux_to_Z2	Total Flux to SPL Z2
Sys11_out.Flux_From_Sun_to_Each_Panel	Flux from Sun to each SPL panel
Sys11_out.Acceleration	
Sys11_out.Acceleration.Coor0_2_9_0_	Acceleration node 1 SPL
Sys11_out.Acceleration.Coor2_7_1_1_0_	Acceleration node 2 SPL
Sys11_out.Acceleration.Coor1_4_1_41_4_	Acceleration node 3 SPL
Sys11_out.Acceleration.Coor0_1_8_1_8_	Acceleration node 4 SPL
Sys11_out.Acceleration.Coor2_2_0_9_	Acceleration node 5 SPL
Sys11_out.Health_State	
Sys11_out.Health_State.Radius_of_SPL_hole	Radius of the hole in SPL due to micrometeorite impact

Sys02_out	Description
Sys02_out.Temp_Middle_Layer	Temperature of the ST middle layer
Sys02_out.Temp_Inner_Layer_To_IE	Temperature of the ST inner layer
Sys02_out.Flux_Outer_LayerFrom_SPL_	Heat flux from ST outer layer to SPL inner layer
Sys02_out.Acceleration	
Sys02_out.Acceleration.Coor0_2_9_0_	Acceleration node 1 ST
Sys02_out.Acceleration.Coor2_7_1_1_0_	Acceleration node 2 ST
Sys02_out.Acceleration.Coor1_4_1_41_4_	Acceleration node 3 ST
Sys02_out.Acceleration.Coor0_1_8_1_8_	Acceleration node 4 ST

Sys02_out.Acceleration.Coor2_2_0_9_	Acceleration node 5 ST
Sys02_out.Health_State	
Sys02_out.Health_State.Radius_of_ST_hole	Radius of the hole in ST due to micrometeorite impact
Sys02_out.Health_State.Radius_of_SPL_ST_Interface_hole	Radius of the hole in the interface between ST and SPL

Sys03_out	Description
Sys03_out.Damages_and_Repairs.	
Sys03_out.Damages_and_Repairs.Solar_PV_Dust	Dust accumulation on solar panels health state
Sys03_out.Damages_and_Repairs.Solar_PV_Damaged	Solar panel health state
Sys03_out.Damages_and_Repairs.Nuclear_Radiator_Dust	Nuclear radiator dust health state
Sys03_out.Damages_and_Repairs.Nuclear_Radiator_Damaged	Nuclear radiator damage health state
Sys03_out.Damages_and_Repairs.Remaining_Battry_Cells	Number of remaining battery cells
Sys03_out.Damages_and_Repairs.Conventor_1_Damaged	Converter 1 health state
Sys03_out.Damages_and_Repairs.Conventor_2_Damaged	Converter 2 health state
Sys03_out.Damages_and_Repairs.Conventor_3_Damaged	Converter 3 health state
Sys03_out.Damages_and_Repairs.Conventor_4_Damaged	Converter 4 health state
Sys03_out.Damages_and_Repairs.Conventor_5_Damaged	Converter 5 health state
Sys03_out.Damages_and_Repairs.Conventor_6_Damaged	Converter 6 health state
Sys03_out.Damages_and_Repairs.Bus_Damaged	Power bus health state
Sys03_out.Damages_and_Repairs.Nuclear_Coolant_Leakage	Coolant leakage indicator/health state
Sys03_out.Power_Demand.	
Sys03_out.Power_Demand.Monitoring_LoadsSensorsFDDsCritical_lightings Sys03_out.Power_Demand.Critical_LoadsECLSSLife_Support	Power requested by sensors, lightning and FDD loads Power request from ECLSS
	-
Sys03_out.Power_Demand.Other_LoadsHouskeepingScientific_instrument Sys03_out.Power_Demand.Pump_Power_Consumption	Power requested by housekeeping and scientific instruments loads Pump power consumption
Sys03_out.Power_Generations	
Sys03_out.Power_Generations.Nuclear_Power	Generated nuclear power
Sys03_out.Power_Generations.Solar_Power	Generated solar power
Sys03_out.Power_Generations.Discharging_Power	Discharging power
Sys03 out.Power Generations.Currently Stored Energy	Stored energy

Sys03_out.Power_Generations.Maximum_Storage	Generated maximum power
Sys03_out.Power_Generations.Generation_Bus_Power	Max power generated delivered through bus
Sys03_out.Power_Generations.Dumping_Load_for_Nuclear_Converter	Dumping loads for nuclear power generator
Sys03_out.Step_Up_Converters.	
Sys03_out.Step_Up_Converters.Nuclear	Step up converter output - nuclear power
Sys03_out.Step_Up_Converters.Solar	Step up converter output - solar power
Sys03_out.Step_Up_Converters.Battry	Step up converter output - energy storage
Sys03_out.Step_Down_Converters.	
Sys03_out.Step_Down_Converters.Critical_LoadsECLSSLife_Support	Loads trough converter 4
Sys03_out.Step_Down_Converters.Monitoring_LoadsSensorsFDDsCritical_lightings	Loads trough converter 5
Sys03_out.Step_Down_Converters.Other_LoadsHouskeepingScientific_instrument	Loads trough converter 6
Sys03_out.Loads_Supply	
Sys03_out.Loads_Supply.Monitoring_Loads_Supply	Provided power to monitoring loads
Sys03_out.Loads_Supply.Other_Loads_Supply	Provided power to accessory loads
Sys03_out.Loads_Supply.LifeSupport_Loads_Supply	Provided power to ECLSS

Sys05_out		
Sys05_out.Health_State.		
Sys05_out.Health_State.Panels_Dust	ECLSS panels health state	
Sys05_out.Health_State.Panels_Paint	ECLSS panels paint health state	
Sys05_out.Health_State.Ventalation_Fan	ECLSS ventilation fan health state	
Sys05_out.Health_State.Air_Tank_Leak	ECLSS air tank health state	
Sys05_out.Health_State.Pressure_Supply_Valve	ECLSS pressure valve health state	
Sys05_out.Health_State.Condenser	ECLSS condenser health state	
Sys05_out.Health_State.Compressor	ECLSS compressor health state	
Sys05_out.Health_State.Evaporator	ECLSS evaporator health state	
Sys05_out.Health_State.Heater	ECLSS heater health state	
Sys05_out.Health_State.Cooling_Fan	ECLSS cooling fan health state	
Sys05_out.ATCS		
Sys05_out.ATCS.Evap_Outlet_Temp_C	Evaporator outlet temperature	
Sys05_out.ATCS.Temp_NH3_C	NH3 temperature	
Sys05_out.ATCS.Temp_Radi_Surf	ECLSS radiator surface temp	

Sys05_out.ATCS.Heat_Gain_kW	ECLSS heat gain	
Sys05_out.ATCS.Air_Flow_Rate_m3_s		
Sys05_out.ATCS.Air_Flow_Rate_m3_s.Z1	Flow rate in Z1	
Sys05_out.ATCS.Air_Flow_Rate_m3_s.Z2	Flow rate in Z2	
Sys05_out.IPCS.Air_Discharge_kg_s		
Sys05_out.IPCS.Air_Discharge_kg_s.Z1	Discharge flow rate in Z1	
Sys05_out.IPCS.Air_Discharge_kg_s.Z2	Discharge flow rate in Z2	
Sys05_out.IPCS.Air_Supply_kg_s		
Sys05_out.IPCS.Air_Supply_kg_s.Z1	Supplied air in Z1	
Sys05_out.IPCS.Air_Supply_kg_s.Z2	Supplied air in Z2	
Sys05_out.Power_Request_kW.Heating		
Sys05_out.Power_Request_kW.Heating.PW_req_heater_1_kW	Power requested by heater in Z1	
Sys05_out.Power_Request_kW.Heating.PW_req_heater_2_kW	Power requested by heater in Z2	
Sys05_out.Power_Request_kW.Cooling		
Sys05_out.Power_Request_kW.Cooling.PW_req_compressor_kW	Power requested by compressor	
Sys05_out.Power_Request_kW.Cooling.PW_req_fan_1_kW	Power requested by fan in Z1	
Sys05_out.Power_Request_kW.Cooling.PW_req_fan_2_kW	Power requested by fan in Z2	
Sys05_out.Power_Consumption_kW.		
Sys05_out.Power_Consumption_kW.Compressor	Power consumed by compressor	
Sys05_out.Power_Consumption_kW.Total_kW	Total power consumption	
Sys05_out.Power_Consumption_kW.Fan	Fan power consumption	
Sys05_out.Power_Consumption_kW.Heater	Heater power consumption	
Sys05_out.Power_Consumption_kW		
Sys05_out.Power_Consumption_kW.Fan.Z1	Power consumed by fan in Z1	
Sys05_out.Power_Consumption_kW.Fan.Z2	Power consumed by fan in z2	
Sys05_out.Power_Consumption_kW.		
Sys05_out.Power_Consumption_kW.Heater.Z1	Power consumed by heater in Z1	
Sys05_out.Power_Consumption_kW.Heater.Z2	Power consumed by heater in Z2	
Sys05_out.Thermal_Efficiency		
Sys05_out.Thermal_Efficiency.Compressor	Thermal efficiency of compressor	
Sys05_out.Thermal_Efficiency.Fan_Z1	Thermal efficiency of fan in Z1	
Sys05_out.Thermal_Efficiency.Fan_Z2	Thermal efficiency on fan in Z2	

Sys05_out.Set_Points.T_Set_Point_Cooling.			
Sys05_out.Set_Points.T_Set_Point_Cooling.Set_Point_Cooling_Z1	Cooling setpoint in Z1		
Sys05_out.Set_Points.T_Set_Point_Cooling.Set_Point_Cooling_Z2	Cooling setpoint in Z2		
Sys05_out.Set_Points.T_Set_Point_Heating.			
Sys05_out.Set_Points.T_Set_Point_Heating.Set_Point_Heating_Z1	Heating setpoint in Z1		
Sys05_out.Set_Points.T_Set_Point_Heating.Set_Point_Heating_Z2 Heating setpoint in Z2			
Sys05_out.Set_Points.P_Set_Point_Discharging.			
Sys05_out.Set_Points.P_Set_Point_Discharging.Set_Point_Discharging_Z1	Discharging setpoint in Z1		
Sys05_out.Set_Points.P_Set_Point_Discharging.Set_Point_Discharging_Z2	Discharging setpoint in Z2		
Sys05_out.Set_Points.P_Set_Point_Supplying			
Sys05_out.Set_Points.P_Set_Point_Supplying.Set_Point_Supplying_Z1	Supplying setpoint Z1		
Sys05_out.Set_Points.P_Set_Point_Supplying.Set_Point_Supplying_Z2	Supplying setpoint Z2		

Sys07_out	Description
Sys07_out.Failure_Mode.	
Sys07_out.Failure_Mode.ECLSS_Panels_Dusty	ECLSS dust on panel failure mode
Sys07_out.Failure_Mode.ECLSS_Panels_Paint	ECLSS paint failure mode
Sys07_out.Failure_Mode.ECLSS_Air_Fan	ECLSS air fan failure mode
Sys07_out.Failure_Mode.ECLSS_Tank_Leak	ECLSS air tank failure mode
Sys07_out.Failure_Mode.ECLSS_Valve	ECLSS valve failure mode
Sys07_out.Failure_Mode.ECLSS_Condenser	ECLSS condenser failure mode
Sys07_out.Failure_Mode.ECLSS_Compressor	ECLSS compressor failure mode
Sys07_out.Failure_Mode.ECLSS_Evaporator	ECLSS evaporator failure mode
Sys07_out.Failure_Mode.ECLSS_Heater	ECLSS heater failure mode
Sys07_out.Failure_Mode.ECLSS_Cooling_Fan	ECLSS cooling fan failure mode
Sys07_out.Failure_Mode.ST_Penetration	ECLSS micrometeorite impact and penetration on ST failure mode
Sys07_out.Failure_Mode.SPL_Penetration	ECLSS micrometeorite impact and penetration on SPL failure mode
Sys07_out.Failure_Mode.IE_FireZ1	Fire in Z1 failure mode
Sys07_out.Failure_Mode.IE_FireZ2	Fire in Z2 failure mode
Sys07_out.Failure_Mode.IE_Airlock	Airlock failure mode
Sys07_out.Failure_Mode.PW_PV_Arrays_Dusty	Dust on solar array failure mode
Sys07_out.Failure_Mode.PW_PV_Arrays_Broken	Broken solar array failure mode

Sys07_out.Failure_Mode.PW_Nuclear_Dusty	Dust on nuclear elements failure mode
Sys07_out.Failure_Mode.PW_Nuclear_Broken	broken nuclear element failure mode
Sys07_out.Failure_Mode.PW_Battery	Battery failure mode
Sys07_out.Failure_Mode.PW_Conv1	Converter 1 failure mode
Sys07_out.Failure_Mode.PW_Conv2	Converter 2 failure mode
Sys07_out.Failure_Mode.PW_Conv3	Converter 3 failure mode
Sys07_out.Failure_Mode.PW_Conv4	Converter 4 failure mode
Sys07_out.Failure_Mode.PW_Conv5	Converter 5 failure mode
Sys07_out.Failure_Mode.PW_Conv6	Converter 6 failure mode
Sys07_out.Failure_Mode.PW_Bus	Power bus failure mode
Sys07_out.Failure_Mode.PW_Coolant_Leakage	Coolant leakage failure mode
Sys07_out.Repair_Rate	
Sys07_out.Repair_Rate.ECLSS_Panels_Dusty	ECLSS dust on panel repair rate
Sys07_out.Repair_Rate.ECLSS_Panels_Paint	ECLSS paint repair rate
Sys07_out.Repair_Rate.ECLSS_Air_Fan	ECLSS air fan repair rate
Sys07_out.Repair_Rate.ECLSS_Tank_Leak	ECLSS air tank repair rate
Sys07_out.Repair_Rate.ECLSS_Valve	ECLSS valve repair rate
Sys07_out.Repair_Rate.ECLSS_Condenser	ECLSS condenser repair rate
Sys07_out.Repair_Rate.ECLSS_Compressor	ECLSS compressor repair rate
Sys07_out.Repair_Rate.ECLSS_Evaporator	ECLSS evaporator repair rate
Sys07_out.Repair_Rate.ECLSS_Heater	ECLSS heater repair rate
Sys07_out.Repair_Rate.ECLSS_Cooling_Fan	ECLSS cooling fan repair rate
Sys07_out.Repair_Rate.ST_Penetration	ECLSS micrometeorite impact and penetration on ST repair rate
Sys07_out.Repair_Rate.SPL_Penetration	ECLSS micrometeorite impact and penetration on SPL repair rate
Sys07_out.Repair_Rate.IE_FireZ1	Fire in Z1 repair rate
Sys07_out.Repair_Rate.IE_FireZ2	Fire in Z2 repair rate
Sys07_out.Repair_Rate.IE_Airlock	Airlock repair rate
Sys07_out.Repair_Rate.PW_PV_Arrays_Dusty	Dust on solar array repair rate
Sys07_out.Repair_Rate.PW_PV_Arrays_Broken	Broken solar array repair rate
Sys07_out.Repair_Rate.PW_Nuclear_Dusty	Dust on nuclear elements repair rate
Sys07_out.Repair_Rate.PW_Nuclear_Broken	Broken nuclear element repair rate
Sys07_out.Repair_Rate.PW_Battery	Battery repair rate
•	!

Sys07_out.Repair_Rate.PW_Conv1	Converter 1 repair rate
Sys07_out.Repair_Rate.PW_Conv2	Converter 2 repair rate
Sys07_out.Repair_Rate.PW_Conv3	Converter 3 repair rate
Sys07_out.Repair_Rate.PW_Conv4	Converter 4 repair rate
Sys07_out.Repair_Rate.PW_Conv5	Converter 5 repair rate
Sys07_out.Repair_Rate.PW_Conv6	Converter 6 repair rate
Sys07_out.Repair_Rate.PW_Bus	Power bus repair rate
Sys07_out.Repair_Rate.PW_Coolant_Leakage	Coolant leakage repair rate

Sys08_out	Description
Sys08_out.Health_States.	
Sys08_out.Health_States.Radius_Fire_Z1	Fire radius in Z1
Sys08_out.Health_States.Radius_Fire_Z2	Fire radius in Z2
Sys08_out.Health_States.Radius_Airlock	Airlock leakage radius
Sys08_out.PressTemp	
Sys08_out.PressTemp.Wall_Temperature_K	Wall temperature
Sys08_out.PressTemp.Evap_Outlet_Temp	Evaporator outlet temperature
Sys08_out.PressTemp.ReturnAirTemperature_C	Return line temperature
Sys08_out.PressTemp.Pressure_Pa.	
Sys08_out.PressTemp.Pressure_Pa.Z1	Pressure in Z1
Sys08_out.PressTemp.Pressure_Pa.Z2	Pressure in Z2
Sys08_out.PressTemp.Air_Temperature_K	
Sys08_out.PressTemp.Air_Temperature_K.Z1	Temperature in Z1
Sys08_out.PressTemp.Air_Temperature_K.Z2	Temperature in Z2
Sys08_out.Thermal_Load	
Sys08_out.Thermal_Load.CoolingLoad	Cooling load
Sys08_out.Thermal_Load.HeatingLoad_kW	Heating load
Sys08_out.Thermal_Load.ThermalLoad	Thermal load
Sys08_out.Flux	
Sys08_out.Flux.HeatGain_W	Heat gain from interior environment
Sys08_out.Flux.HeatFlux	Heat flux from interior environment

Sys08_out.Flux.WallConvection	Wall convection from interior environment	
Sys08_out.Flow.	on a monimum	
Sys08_out.Flow.FireHeatFlow	Heat flow due to fire	
Sys08_out.Flow.AirFlowRate	Air flowrate	
Sys08_out.Flow.AirCirculation	Air circulation	
Sys08_out.Flow.AirLeakage	Leaking air towards external environment	
Sys08_out.Flow.AirSupply		
Sys08_out.Flow.AirSupply.Z1	Supplied air by pressure control in Z1	
Sys08_out.Flow.AirSupply.Z2	Supplied air by pressure control in Z2	
Sys08_out.Flow.AirDischarge		
Sys08_out.Flow.AirDischarge.Z1	Discharged air from Z1	
Sys08_out.Flow.AirDischarge.Z2	Discharged air from Z2	
Sys08_out.Cyber		
Sys08_out.Cyber.Pocket_Door	Pocket door position	
Sys08_out.Cyber.Air_Temp		
Sys08_out.Cyber.Air_Temp.Air_Temp_Z1	Temperature in Z1	
Sys08_out.Cyber.Air_Temp.Air_Temp_Z2	Temperature in Z2	
Sys08_out.Cyber.Air_Pressure		
Sys08_out.Cyber.Air_Pressure.Air_Pressure_Z1	Pressure in Z1	
Sys08_out.Cyber.Air_Pressure.Air_Pressure_Z2	Pressure in Z2	
Sys08_out.Cyber.Smoke_Detector		
Sys08_out.Cyber.Smoke_Detector.Smoke_Detector_Z1	Smoke detector state in Z1	
Sys08_out.Cyber.Smoke_Detector.Smoke_Detector_Z2	Smoke detector state in Z2	

Sys09_out.Disturbances_Phy	Description
Sys09_out.Disturbances_Phy.GroundTempreture	External ground temperature
Sys09_out.Disturbances_Phy.dustAccum	Dust accumulation rate
Sys09_out.Disturbances_Phy.SolarPhy	
Sys09_out.Disturbances_Phy.Solar_Vector	Solar position vector
Sys09_out.Disturbances_Phy.Solar_Flux_3D	Solar flux
Sys09_out.Disturbances_Phy.SolarPhy.Solar_Angle	Solar position angle

Sys09_out.Disturbances_Phy.Solar_Flux_2D	Solar flux in 2D
Sys09_out.Disturbances_Phy.meteoritePhy	
Sys09_out.Disturbances_Phy.meteoritePhy.meteorite_coord	Meteorite impact coordinates
Sys09_out.Disturbances_Phy.meteoritePhy.meteorite_mass	Meteorite mass
Sys09_out.Disturbances_Phy.meteoritePhy.meteorite_velocity	Meteorite velocity
Sys09_out.Disturbances_Phy.moonquakePhy	
Sys09_out.Disturbances_Phy.moonquakePhy.moonquakeMag	Moonquake magnitude
Sys09_out.Disturbances_Phy.moonquakePhy.accX	Moonquake acceleration in x direction
Sys09_out.Disturbances_Phy.moonquakePhy.accY	Moonquake acceleration in y direction
Sys09_out.Disturbances_Phy.Fire_Phys	
Sys09_out.Disturbances_Phy.Fire_Phys.Fire_Temp	Fire temperature
Sys09_out.Disturbances_Phy.Fire_Phys.Fire_Coord	Fire origin coordinate
Sys09_out.Disturbances_Phy.Fire_Phys.rFire_Z1	Radius of the fire in Z1
Sys09_out.Disturbances_Phy.Fire_Phys.rFire_Z2	Radius of the fire in Z2
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_PW	
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_PW.DL_Convertors_DueTo_Temp_Z1	Damage level to converter due to high temp.
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_PW.DL_ES_Temp_DueTo_Z1	Damage level to batteries due to high temp.
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_ECLSS	
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_ECLSS.DL_Fan_DueTo_Temp_Z1	Damage level to fan in Z1 due to temp.
$Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_ECLSS.DL_Fan_DueTo_Temp_Z2$	damage level to fan in Z2 due to temp.
Sys09_out.Disturbances_Phy.Sys9_Damage_Level.DL_ECLSS.DL_Compressor_DueTo_Temp_Z2	Damage level to compressor in Z2 due to temp.
Sys09_out.Disturbances_Phy.IE_HeatGain_kW	
Sys09_out.Disturbances_Phy.IE_HeatGain_kW.IE_PW_Z1_HeatGain_kW	Heat gain to Z1
Sys09_out.Disturbances_Phy.IE_HeatGain_kW.IE_ECLSS_Z2_HeatGain_kW	Heat gain to Z2
Sys09_out.Meteorite	
Sys09_out.Meteorite.SPL	Meteorite impact intensity level on SPL
Sys09_out.Meteorite.ST	Meteorite impact intensity level on ST
Sys09_out.Meteorite.IE_Z1	Meteorite impact intensity level on Z1
Sys09_out.Meteorite.IE_Z2	Meteorite impact intensity level on Z2
Sys09_out.Meteorite.ECLSS_PR	Meteorite impact intensity level on PR

Sys09 out.Meteorite.ECLSS TH	Meteorite impact intensity level on TH
Sys09 out.Meteorite.ECLSS_EE	Meteorite impact intensity level on EE
Sys09_out.Meteorite.PW_PD	Meteorite impact intensity level on PD
Sys09_out.Meteorite.PW_ES	Meteorite impact intensity level on ES
Sys09_out.Meteorite.PW_S	Meteorite impact intensity level on S
Sys09_out.Meteorite.PW_N	Meteorite impact intensity level on N
Sys09_out.Fire	
Sys09_out.Fire.SPL	Fire intensity level on SPL
Sys09_out.Fire.ST	Fire intensity level on ST
Sys09_out.Fire.IE_Z1	Fire intensity level on Z1
Sys09_out.Fire.IE_Z2	Fire intensity level on Z2
Sys09_out.Fire.ECLSS_PR	Fire intensity level on PR
Sys09_out.Fire.ECLSS_TH	Fire intensity level on TH
Sys09_out.Fire.ECLSS_EE	Fire intensity level on EE
Sys09_out.Fire.PW_PD	Fire intensity level on PD
Sys09_out.Fire.PW_ES	Fire intensity level on ES
Sys09_out.Fire.PW_S	Fire intensity level on S
Sys09_out.Fire.PW_N	Fire intensity level on N
Sys09_out.Moonquake	
Sys09_out.Moonquake.SPL	Moonquake intensity level on SPL
Sys09_out.Moonquake.ST	Moonquake intensity level on ST
Sys09_out.Moonquake.IE_Z1	Moonquake intensity level on Z1
Sys09_out.Moonquake.IE_Z2	Moonquake intensity level on Z2
Sys09_out.Moonquake.ECLSS_PR	Moonquake intensity level on PR
Sys09_out.Moonquake.ECLSS_TH	Moonquake intensity level on TH
Sys09_out.Moonquake.ECLSS_EE	Moonquake intensity level on EE
Sys09_out.Moonquake.PW_PD	Moonquake intensity level on PD
Sys09_out.Moonquake.PW_ES	Moonquake intensity level on ES
Sys09_out.Moonquake.PW_S	Moonquake intensity level on S
Sys09_out.Moonquake.PW_N	Moonquake intensity level on N

Plot Output

Table 7: Plot Outputs and Descriptions

Health State (HS)		
Subplot	Title	Description
subplot(4,7,1)	ECLSS Panels Dust Deposition	Dust deposition on ECLSS radiator panels.
subplot(4,7,2)	ECLSS Panels Paint	Health state of the ECLSS paint. Health state equal to 1 means unhealthy component
subplot(4,7,3)	ECLSS Air Fan	Health state of the ECLSS Zone 1 and 2 fans. Health state equal to 1 means unhealthy component
subplot(4,7,4)	ECLSS Tank Leak	Health state of the ECLSS tank. Health state equal to 1 means unhealthy component
subplot(4,7,5)	ECLSS Valve	Health state of the ECLSS pressure control valve. Health state equal to 1 means unhealthy component
subplot(4,7,6)	ECLSS Condenser	Health state of the ECLSS condenser. Health state equal to 1 means unhealthy component
subplot(4,7,7)	ECLSS Compressor	Health state of the ECLSS compressor. Health state equal to 1 means unhealthy component
subplot(4,7,8)	ECLSS Evaporator	Health state of the ECLSS evaporator. Health state equal to 1 means unhealthy component
subplot(4,7,9)	ECLSS Heater	Health state of the ECLSS heater. Health state equal to 1 means unhealthy component
subplot(4,7,10)	ECLSS Cooling Fan	Health state of the ECLSS zone 1 and 2 cooling fan. Health state equal to 1 means unhealthy component
subplot(4,7,11)	ST Penetration	Hole radius on structural system
subplot(4,7,12)	SPL Penetration	Hole radius on structural protective layer system
subplot(4,7,13)	IE Fire Z1	Fire radius in zone 1

		1
subplot(4,7,14)	IE Fire Z2	Fire radius in zone 2
subplot(4,7,15)	IE Airlock Leakage	Airlock leakage radius
subplot(4,7,16)	PW PV Arrays Dust Deposition	Dust deposition on solar panel arrays
subplot(4,7,17)	PW PV Arrays Broken	Health state of solar panels. Health state equal to 1 means unhealthy component
subplot(4,7,18)	PW Nuclear Panels Dust Deposition	Dust deposition on PW nuclear radiators panels
subplot(4,7,19)	PW Nuclear Panels Broken	Health state of the PW nuclear radiators. Health state equal to 1 means unhealthy component
subplot(4,7,20)	Battery	Remaining battery cells
subplot(4,7,22)	PW Converter 1	Health state of PW converter 1. Health state equal to 1 means unhealthy component
subplot(4,7,23)	PW Converter 2	Health state of PW converter 2. Health state equal to 1 means unhealthy component
subplot(4,7,24)	PW Converter 3	Health state of PW converter 3. Health state equal to 1 means unhealthy component
subplot(4,7,25)	PW Converter 4	Health state of PW converter 4. Health state equal to 1 means unhealthy component
subplot(4,7,26)	PW Converter 5	Health state of PW converter 5. Health state equal to 1 means unhealthy component
subplot(4,7,27)	PW Converter 6	Health state of PW converter 6. Health state equal to 1 means unhealthy component
subplot(4,7,28)	PW Bus	Health state of the PW routing bus . Health state equal to 1 means unhealthy component
subplot(4,7,21)	PW Coolant Leakage	Health state of the PW nuclear cooling system. Health state equal to 1 means unhealthy component
Agent (AG)		
Subplot	Title	Description
subplot(4,7,1)	ECLSS Panels Dusty	Dust repair on ECLSS radiator panels.

1 1 ((4.7.0)	EGLGG D. 1 D.		' Cd FOLGG ' '	
subplot(4,7,2)	ECLSS Panels Paint		r action of the ECLSS paint.	
subplot(4,7,3)	ECLSS Air Fan	-	r action of the ECLSS Zone 1 and 2 fans.	
subplot(4,7,4)	ECLSS Tank Leak		r action of the ECLSS tank.	
subplot(4,7,5)	ECLSS Valve	Repair	r action of the ECLSS pressure control valve.	
subplot(4,7,6)	ECLSS Condenser	Repair	r action of the ECLSS condenser.	
subplot(4,7,7)	ECLSS Compressor	Repair	r action of the ECLSS compressor.	
subplot(4,7,8)	ECLSS Evaporator	Repair	r action of the ECLSS evaporator.	
subplot(4,7,9)	ECLSS Heater	Repair	r action of the ECLSS heater.	
subplot(4,7,10)	ECLSS Cooling Fan	Repair	r action of the ECLSS zone 1 and 2 cooling fan.	
subplot(4,7,11)	ST Penetration	Hole 1	radius on structural system	
subplot(4,7,12)	SPL Penetration	Hole 1	radius on structural protective layer system	
subplot(4,7,13)	IE FireZ1	Fire si	appression in zone 1	
subplot(4,7,14)	IE FireZ2	Fire su	appression in zone 2	
subplot(4,7,15)	IE Airlock	Airloc	k repair activity	
subplot(4,7,16)	PW PV Arrays Dusty	Dust r	emoval on solar panel arrays	
subplot(4,7,17)	PW PV Arrays Broken	Repair	r action of solar panels.	
subplot(4,7,18)	PW Nuclear Dusty	Dust r	emoval on PW nuclear radiators panels	
subplot(4,7,19)	PW Nuclear Broken	Repair	r action of the PW nuclear radiators.	
subplot(4,7,20)	PW Battery	Batter	y cells repair	
subplot(4,7,22)	PW Conv1	Repair action of PW converter 1.		
subplot(4,7,23)	PW Conv2	Repair	r action of PW converter 2.	
subplot(4,7,24)	PW Conv3	Repair	r action of PW converter 3.	
subplot(4,7,25)	PW Conv4		Repair action of PW converter 4.	
subplot(4,7,26)	PW Conv5	Repair action of PW converter 5.		
subplot(4,7,27)	PW Conv6	Repair action of PW converter 6.		
subplot(4,7,28)	PW Bus	Repair	r action of the PW routing bus.	
subplot(4,7,21)	PW Coolant Leakage	Repair action of the PW nuclear cooling system.		
		Power (I	PW)	
Subplot	Title		Description	
subplot(3,6,1)	ECLSS Load		ECLSS power demand	

subplot(3,6,2)	Monitoring Loads	Monitoring power demand
subplot(3,6,3)	Other Housekeeping Instruments	Other power demand
subplot(3,6,4)	Pump Power Consumption	Pump power demand
subplot(3,6,5)	Nuclear Power	Nuclear power generation
subplot(3,6,6)	Solar Power	Solar power generation
subplot(3,6,7)	Discharge Power	Discharge power
subplot(3,6,8)	Currently Stored Energy	Currently stored energy
subplot(3,6,9)	Dumping Load	Dumping power
subplot(3,6,10)	Generation Bus Power	Generation power produced
subplot(3,6,13)	Output of Step Up Convl Nuclear	Output nuclear power sent
subplot(3,6,14)	Output of Step Up Conv2 Solar	Output solar power sent
subplot(3,6,15)	Output of Step Up Conv3 Battery	Output energy storage power
subplot(3,6,16)	Output of Step Down Conv4	ECLSS power sent
subplot(3,6,17)	Output of Step Down Conv5	Housekeeping loads power sent
subplot(3,6,18)	Output of Step Down Conv6	Monitoring loads power sent
	ECLSS	(ECLSS)
Subplot	Title	Description
subplot(2,3,1)	PW Request Heater 1	Power requested from heater in zone 1
subplot(2,3,2)	PW Consumption Heater Z1	Power consumed from heater in zone 1
subplot(2,3,3)	PW Request Heater 2	Power requested from heater in zone 2
subplot(2,3,4)	PW Consumption Heater Z2	Power consumed from heater in zone 2
subplot(2,3,5)	PW Consumption Compressor	Power consumed by ECLSS compressor
subplot(2,3,6)	Total PW Consumption	Total power consumption
Interior Environment (IE)		
Subplot	Title	Description
subplot(2,5,1)	Pressure Zone 1	Pressure in zone 1.
subplot(2,5,2)	Pressure Zone 2	Pressure in zone 2
subplot(2,5,3)	Temperature Zone 1	Temperature in zone 1
subplot(2,5,4)	Temperature Zone 2	Temperature in zone 2
subplot(2,5,5)	Pocket Door	Pocket in

subplot(2,5,6)	Fans Air Flow Rate	Zone 1 and 2 fan flow rates
subplot(2,5,7)	Air Flow Z1-Z2	Air in flow z1 z2
subplot(2,5,8)	Air Leakage	Air in
subplot(2,5,9)	Air Supply	Air in
subplot(2,5,10)	Air Discharge	Air in
		Structural (ST)
Subplot	Title	Description
subplot(3,5,1)	Acceleration x	Habitat structure acceleration in x direction. Location 1
subplot(3,5,6)	Acceleration y	Habitat structure acceleration in y direction. Location 1
subplot(3,5,11)	Acceleration z	Habitat structure acceleration in z direction. Location 1
subplot(3,5,2)	Acceleration x	Habitat structure acceleration in x direction. Location 2
subplot(3,5,7)	Acceleration y	Habitat structure acceleration in y direction. Location 2
subplot(3,5,12)	Acceleration z	Habitat structure acceleration in z direction. Location 2
subplot(3,5,3)	Acceleration x	Habitat structure acceleration in x direction. Location 3
subplot(3,5,8)	Acceleration y	Habitat structure acceleration in y direction. Location 3
subplot(3,5,13)	Acceleration z	Habitat structure acceleration in z direction. Location 3
subplot(3,5,4)	Acceleration x	Habitat structure acceleration in x direction. Location 4
subplot(3,5,9)	Acceleration y	Habitat structure acceleration in y direction. Location 4
subplot(3,5,14)	Acceleration z	Habitat structure acceleration in z direction. Location 4
subplot(3,5,5)	Acceleration x	Habitat structure acceleration in x direction. Location 5
subplot(3,5,10)	Acceleration y	Habitat structure acceleration in y direction. Location 5
subplot(3,5,15)	Acceleration z	Habitat structure acceleration in z direction. Location 5
	Str	ructural Protective Layer (SPL)
Subplot	Title	Description
subplot(3,5,1)	Acceleration x	Habitat structural protective layer acceleration in x direction. Location 1
subplot(3,5,6)	Acceleration y	Habitat structural protective layer acceleration in y direction. Location 1
subplot(3,5,11)	Acceleration z	Habitat structural protective layer acceleration in z direction. Location 1
subplot(3,5,2)	Acceleration x	Habitat structural protective layer acceleration in x direction. Location 2

Acceleration y	Habitat structural protective layer acceleration in y direction. Location 2
Acceleration z	Habitat structural protective layer acceleration in z direction. Location 2
Acceleration x	Habitat structural protective layer acceleration in x direction. Location 3
Acceleration y	Habitat structural protective layer acceleration in y direction. Location 3
Acceleration z	Habitat structural protective layer acceleration in z direction. Location 3
Acceleration x	Habitat structural protective layer acceleration in x direction. Location 4
Acceleration y	Habitat structural protective layer acceleration in y direction. Location 4
Acceleration z	Habitat structural protective layer acceleration in z direction. Location 4
Acceleration x	Habitat structural protective layer acceleration in x direction. Location 5
Acceleration y	Habitat structural protective layer acceleration in y direction. Location 5
Acceleration z	Habitat structural protective layer acceleration in z direction. Location 5
	Disturbance Block (DB)
Title	Description
Meteorite SPL	Meteorite impact on SPL intensity level
Meteorite ST	Meteorite impact on ST intensity level
Meteorite ECLSS PR	Meteorite impact on ECLSS pressure controller intensity level
Meteorite ECLSS TH	Meteorite impact on ECLSS thermal controller intensity level
Meteorite ECLSS EE	Meteorite impact on ECLSS external components intensity level
Meteorite PW PD	Meteorite impact on PW power distribution intensity level
Meteorite PW ES	Meteorite impact on PW energy storage intensity level
Meteorite PW S	Meteorite impact on PW solar system intensity level
Meteorite PW N	Meteorite impact on PW nuclear system intensity level
Fire IE Z1	Fire in zone 1 intensity level
Fire IE Z2	Fire in zone 2 intensity level
	Acceleration z Acceleration y Acceleration z Acceleration x Acceleration x Acceleration y Acceleration z Acceleration x Acceleration x Acceleration y Acceleration z Title Meteorite SPL Meteorite ST Meteorite ECLSS PR Meteorite ECLSS TH Meteorite ECLSS EE Meteorite PW PD Meteorite PW PD Meteorite PW S Meteorite PW S Meteorite PW N Fire IE Z1

subplot(3,9,12)	Fire ECLSS PR	Fire on ECLSS pressure controller intensity level
subplot(3,9,13)	Fire ECLSS TH	Fire on ECLSS thermal controller intensity level
subplot(3,9,14)	Fire PW PD	Fire on PW power distribution intensity level
subplot(3,9,15)	Fire PW ES	Fire on PW energy storage intensity level
subplot(3,9,19)	Moonquake SPL	Moonquake on structural protective layer intensity level
subplot(3,9,20)	Moonquake ST	Moonquake on habitat structure intensity level
subplot(3,9,21)	Moonquake ECLSS PR	Moonquake on ECLSS pressure controller intensity level
subplot(3,9,22)	Moonquake ECLSS TH	Moonquake on ECLSS thermal controller intensity level
subplot(3,9,23)	Moonquake ECLSS EE	Moonquake on ECLSS exterior components intensity level
subplot(3,9,24)	Moonquake PW PD	Moonquake on power distribution intensity level
subplot(3,9,25)	Moonquake PW ES	Moonquake on PW energy storage intensity level
subplot(3,9,26)	Moonquake PW S	Moonquake on PW solar intensity level
subplot(3,9,27)	Moonquake PW N	Moonquake on PW nuclear intensity level

Transitions

In this version of HabSim, the user can control the available power and thermal and pressure setpoints by setting variables from the input file.

Available Power Setting (Power Generation Units Control)

In HabSim, the standard simulation settings are full availability of solar, nuclear and energy storage power. The PWset variable has a standard value of 100100100. This indicates: 100% nuclear power availability, 100% solar power availability and 100% energy storage availability. This variable can be changed, for example to PW = 087023045, which means. 87% nuclear power availability, 23% solar power availability and 45% energy storage availability. This gives the results shown in Figure 22.

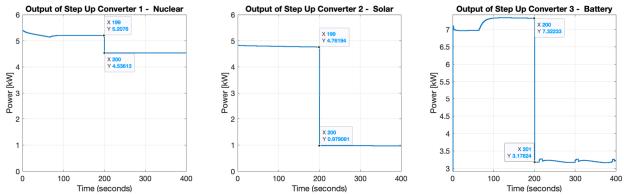
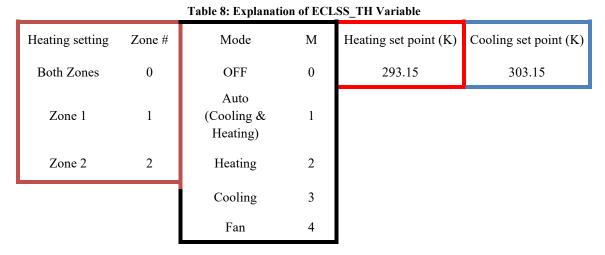



Figure 22: Change of Nuclear, Solar and Energy Storage Availability

ECLSS Thermal Control Setpoints ECLSS (Temp Control)

For the ECLSS thermal control, the standard value of the variable ECLSS_TH is 012931530315. This variable is better explained in Table 8. The heating zone number refer to the zone to be heated by ECLSS thermal control. The user can decide to heat one zone or both zones. About the mode, the user can turn thermal control off, setting it to automatically heating and cooling, or selecting to use only the heating, only the cooling or only the fan air recirculation system. The heating setpoint is the temperature at which the heating will be activated, and the cooling setpoint is the temperature at which the cooling system will be activated.

An example of setpoint temperature change is shown in Figure 23. The simulation shows the thermal setting to prepare the habitat for dormant state. In this case, at 200 seconds, the variable IE_TEMP is set to 012831528615. This changes the cooling setpoint of both zone one and zone two to 286.15K, and the heating setpoint will be set to 283.15K. Both cooling and heating will be activated.

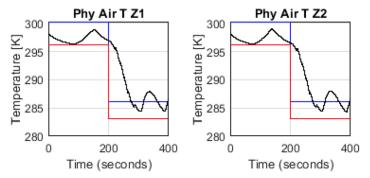


Figure 23: Change of Temperature Setpoint

ECLSS Pressure Control Setpoints ECLSS (Press Control)

The standard values for the ECLSS pressure control boundaries are set by using the variable ECLSS_PR, which standard values is **012931530315**. This variable is better explained in Table 9. The control setting number refer to the zone to be controlled by ECLSS pressure control. The user can decide to control the pressure in one zone or both zones. About the mode, the user can turn pressure control off, setting it to automatically supplying and discharge air, or selecting to use only the air supplying, only the air discharge.

The supply setpoint is the temperature at which the pressure supply will be activated, injecting air into the system. The discharge setpoint is the pressure at which the air discharging system will be activated to vent out air to the exterior environment.

Table 9: Explanation of ECLSS_PR Variable

Control settings	Zone #	Mode	M	Supply set point (Pa)	Discharge set point (Pa)
Both Zones	0	OFF	0	10032500	10232500
Zone 1	1	Auto (Supply & Discharge)	1		
Zone 2	2	Supply	2		
		Discharge	3		

An example of pressure setpoint change is shown in Figure 24. The simulation shows the pressure setting to prepare the habitat for dormant state. In this example, the pressure setpoint is changed at 200 seconds by setting the value of IE_PRESS to 010603250006532500. This pressure will accommodate the habitat dormant conditions.

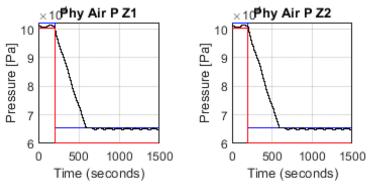


Figure 24: Change of Pressure Setpoints