

RETH

Extra-terrestrial Habitat Systems: Safety, Reliability, and Resilience

Jory Lyons¹,

Dr. Amin Maghareh², Audai Theinat², Dr. Shirley Dyke^{2,3}, Dr. Antonio Bobet²

¹ School of Aeronautics and Astronautics, Purdue University
² Lyles School of Civil Engineering, Purdue University
³School of Mechanical Engineering, Purdue University

Lyons; August 2, 2018

PURDUE Purdue RETH Team

Resilient ExtraTerrestrial Habitats

2

Lyons; August 2, 2018

RETH

Introduction

Background and Motivation Environmental Hazards Design Approaches

Methodology

Safety, Reliability, and Resilience

Case Study

Model Rocket

Strengths, Weaknesses, Opportunities, Threats (SWOT) Analysis

Conclusion

"Can you imagine living on the moon?"

PURDUE

Lyons; August 2, 2018

Background & Motivation

- Grand challenge to design resilient extraterrestrial habitats
 - Envision first Earth-independent human settlement
- Current risk-based techniques lack resilience
- Critiquing conventional reliability-based design
- Avoid catastrophic disasters
 - Apollo 1 fire
 - Space Shuttle failures

European Space Agency

Lyons; August 2, 2018

Environmental Hazards

- Temperature extremes
- Hypervelocity Meteoroids
- Radiation
- Moon-quakes
- Atmospheric Vacuum

Purdue RETH

Lyons; August 2, 2018

Proposed Approach: Resilience-based Design

 ability for system to absorb, recover, and adapt quickly from disruption without fundamental changes in function or sacrifices in safety

RETH

Current Approach: Reliability-based Design

*Simplified but lacks resilience

	6	Catastrophic	5	5	10	15	20	25					
	ev	Significant	4	4	8	12		20					
	e r	Moderate	3	3	6	9	12	15					
	i t	Low	2	2	4	6	8	10					
	У	Negligible	1	1	2	3	4	5					
Catastrophic		STOP	2. 2	1	2	3	4	5					
Unacceptable		URGENTACTION		Improbable	Remote	Occasional	Probable	Frequent					
Undesirable		ACTION											
Acceptable	Acceptable MONITOR												
Desirable	Desirable NO ACTION				LI	Keimoo	u						

http://blog.mindgenius.com/2011/04/risk-management-with-gordon-wyllie.html

Lyons; August 2, 2018

RETH

Reliability-based vs Resilience-based

	Anticipation	Resistance	Adaptation	Recovery	Recovery Time
Resilience	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Reliability	\checkmark	\checkmark			
Redundancy	\checkmark		\checkmark	\checkmark	
Robustness	\checkmark	\checkmark			
Reconfigurability			\checkmark	\checkmark	
Recoverability				\checkmark	\checkmark
Rapidity			\checkmark		\checkmark

Purdue RETH

Lyons; August 2, 2018

Reliability-Based Approaches

- Failure Modes, Effects, and Criticality Analysis (FMECA) Occurrence (O), Severity (S), Detection (D) Risk Priority Number (RPN = O*S*D) Criticality Number
- Probabilistic Risk Assessment (PRA) Includes FMECA or FMEA Fault Tree Analysis (FTA) Event-sequence Diagram (ESD)

Stamatelatos, M. et al. (2011). Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. 10.13140/RG.2.2.18206.13122.

Reliability-Based Approaches – Differences

• Failure Modes, Effects, and Criticality Analysis (FMECA) Helps tell which failures to fix and data to acquire

• Probabilistic Risk Assessment (PRA) Uses FMECA and determines more failures and combinations May include *partial* or full FMECA Quantitative and qualitative

Stamatelatos, M. et al. (2011). Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. 10.13140/RG.2.2.18206.13122.

Criticality – FMECA

Identify and rank importance of component to system Basic failure rate, λ_p

Failure mode ratio, α

Conditional probability of failure, β

Conditional probability of detection, $\boldsymbol{\upsilon}$

Mission phase duration, t

U.S. Department of Defense. (1980). MIL-STD-1629A, Procedures For Performing A Failure Mode, Effects and Criticality Analysis.

Lyons; August 2, 2018

Model Rocket Case Study

Lyons; August 2, 2018

RETH

Model Rocket Case Study – FMECA

Identification Number	Component Name	Component Function	Failure Mode(s)	Mission Stage	Failure Cause(s)	Failure Effects	Failure Detection Method	Occurrence Index (O)	Severity Index (S)	Detection Index (D)	Risk Priority Number (O)*(S)*(D)
1	Parachute	Landing	Deployment failure	Landing	Stuck/jammed	Unrecoverable rocket	None	4	5	5	100

Lyons; August 2, 2018

Model Rocket Case Study – FMECA

Identification Number	Component Name	Component Function	Failure Mode(s)	Mission Stage	Failure Cause(s)	Failure Ef	ffects	Failu Dete Met	ure O ection In hod	ccurrence dex (O)	Severity Index (S)	Detection Index (D)	Risk Priority Number (O)*(S)*(D)
1	Parachute	Landing	Deployment failure	Landing	Stuck/jammed	Unrecove: rocket	rable	No	one 4	L	5	5	100
Identification	Data Source	Failure Effect	Failure	Failure Rate	e Conditional	Operating	Critica	ality	Total	Damag	e Dan	age Effects	Remarks
Number		Probability	Mode	(λ_p)	Probability	Time (t)	Numb	er	Item	Mode			
		(β)	Ratio (α)		of Detection	(sec)			Criticality	7			
1	Estimate	1.000	0.900	0.01	1.00	1	0.009		0.024	Use	Mor	e probable	Need backup

Lyons; August 2, 2018

PURDUE

Model Rocket Case Study – FMECA

Identification Number	Component Name	Component Function	Failure Mode(s)	Mission Stage	Failure Cause(s)	Failure Effects	Failure Detection Method	Occurrence Index (O)	Severity Index (S)	Detection Index (D)	Risk Priority Number (O)*(S)*(D)
1	Parachute	Landing	Deployment failure	Landing	Stuck/jammed	Unrecoverable rocket	None	4	5	5	100

Identification Number	Data Source	Failure Effect Probability (<i>f</i>)	Failure Mode Ratio (a)	Failure Rate (λ_p)	Conditional Probability of Detection	Operating Time (1) (sec)	Criticality Number	Total Item Criticality	Damage Mode	Damage Effects	Remarks
1	Estimate	1.000	0.900	0.01	1.00	1	0.009	0.024	Use	More probable	Need backup

Lyons; August 2, 2018

RETH

Lyons; August 2, 2018

RETH

Event-sequence Diagram (ESD)

Lyons; August 2, 2018

Resilient Extra-terrestrial Habitat

PURDUE

Reliability-based Design (FMECA/PRA) Analysis

Lyons; August 2, 2018

- Proven to be effective to determine quantitative and qualitative risks
- Accounts for catastrophic failure and hazards

Weaknesses

- Lacks adaptability and recoverability
- Inapplicable to cope with unknown hazards
- May require experts and require identification of rare hazards mixtures

RETH

Opportunities

- Can determine system interdependencies
- Can be improved/incorporated in resilience framework

Threats

- May ignore some system failure modes
- May not be feasible for complex systems

Conclusions

Investigated reliability and resilience-based design

• FMECA and PRA

- Create partial system resilience
- Can be incorporated in RETH resilience-based framework

Make living safer and more sustainable

• Resilience is the key to have safe permanent habitats

PURDUE

INTERNATIONAL RETH WORKSHOP

OCTOBER 22nd - 23rd 2018

Thank You Purdue.edu/reth Iyons41@purdue.edu

Lyons; August 2, 2018

Stamatelatos, Michael & Dezfuli, Homayoon & Apostolakis, G & Everline, Chester & Guarro, Sergio & Mathias, Donovan & Mosleh, Ali & Paulos, Todd & Riha, David & Smith, Curtis & Vessely, William & Youngblood, Robert. (2011). Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. 10.13140/RG.2.2.18206.13122. Stamatis, D. H. (2003). Failure Mode and Effect Analysis, 2nd edition. ASQ Quality Press, Milwaukee, WI, ISBN 0-87389-598-3. Retrieved May 25, 2018, from http://www.qualitypress.asq.org U.S. Department of Defense. (1980). MIL-STD-1629A, Procedures For Performing A Failure Mode, Effects and Criticality Analysis.

Back-Up Slides

Lyons; August 2, 2018

RETH

Purdue.edu/reth lyons41@purdue.edu

Lyons; August 2, 2018

FMECA – MIL-STD-1629A

FAILURE MODE EFFECTS AND CRITICALIN ANALYSIS - MAINTAINABILITY INFORMATION

SYSTEM/SUBSYSTEM	NOMENCLATURE	SYS	STEM IDENTIFICATI	ON NUMBER		DATE:		PREPA	RED BY:			
INDENTURE LEVEL	REFERENCE	E DRAWING	MISSION			SHEET OF APPROVED BY:						
SYSTEM/SUBSYSTEM	DESCRIPTION		COMPENSATING PROVISIONS									
ITEM IDWT NOMENCLAT NO.	FUNCTION,	FUNCTIONAL FAILURE	ENG INEERING FAILURE MODE NO.	MISSION L PHASE EF	FAILURE EFF'E OCAL NEXT FECTS; HIGHER LEVEL	END EFFECTS	FAILURE DETECTION METHOD	SEVERITY CLASS	MINIMUM EQUIPMENT LIST	ENGINEERI MODE MI REM	NG FAILURE IBF And Arks	
SYSTEM		<u></u>	DAMA	GE MODE AI	ND EFFECT	S ANAL	YSIS	DAT	Ε			
INDENTURE LEVEL	ING	U.	S. Departm 1629A, P Mode, Ff	ent of Defe Procedures fects and (ense. (198 For Perfo Criticality A	30). MI prming Analys	L-STD- A Failu is	sне re _{сом}	ET PILED BY	_ OF		
		FUNCTION						APP	ROVED BY		DENADVO	
NUMBER	IDENTIFICATION (NOMENCLATURE)	FUNCTION	AND CAUSES	MODE	CLASS.	MO		LOCAL H	NEXT IIGHER LEVEL	END EFFECTS	REMARKS	

Lyons; August 2, 2018

PURDUE

RETH

PURDUE

Model Rocket Case Study – FMECA

Identification Number	Component Name	Component Function	Failure Mode(s)	Mission Stage	Failure Cause(s)	Failure Effects	Failure Detection Method	Occurrence Index (O)	Severity Index (S)	Detection Index (D)	Risk Priority Number (O)*(S)*(D)
1	Parachute	Landing	Deployment failure	Landing	Stuck / jammed	Unrecoverable rocket	None	4	5	5	100
2			Break	Landing	Low strength, loose	Unrecoverable rocket	None	3	5	5	75
3	Fin	Stability	Angle/position misalignment	Mission	Loose, bad manufacturing	Off-course, unrecoverable rocket	Before launch inspection	3	3	2	18
4			Break	Flight	Low strength, loose	Off-course, unrecoverable rocket	None	1	4	5	20
5	Core Stage	Structure	Break	Mission	Low strength, loose	Unrecoverable rocket	None	1	5	5	25
6	Engine	Propulsion	Ignition failure	Flight	Faulty, wet	None, unrecov- erable rocket	Before launch inspection	3	2	2	12
7			Explode	Flight	Faulty, broken	Unrecoverable rocket	None	2	5	5	50
8	Nosecone	Aerodynamics	Deployment failure	Landing	Stuck / jammed	Unrecoverable rocket	None	4	5	5	100
9			Break	Mission	Low strength	Unrecoverable rocket	None	2	5	5	50

PURDUE

Model Rocket Case Study – FMECA

Identification	Data Source	Failure Effect	Failure	Failure Rate	Conditional	Operating	Criticality	Total	Damage	Damage Effects	Remarks
Number		Probability	Mode	(λ_p)	Probability	Time (t)	Number	Item	Mode		
		(β)	Ratio (α)		of Detection	(sec)		Criticality			
1	Estimate	1.000	0.900	0.01	1.00	1	0.009	0.024	Use	More probable	Need
											backup
2	Estimate	1.000	0.100	0.005	1.00	30	0.015		Use/age	More probable	
3	Estimate	0.500	0.200	0.002	1.00	40	0.008	0.0084	Use	More probable	
4	Estimate	0.500	0.800	0.0001	1.00	10	0.0004		Use	More probable	
5	Estimate	1.000	1.000	0.001	1.00	40	0.04	0.04	Use	More probable	
6	Estimate	0.200	0.300	0.01	1.00	1	0.0006	0.0076	Use/age	More probable	Need better
											detection
7	Estimate	1.000	0.700	0.001	1.00	10	0.007		Use/age	More probable	
8	Estimate	1.000	0.700	0.01	1.00	1	0.007	0.019	Use	More probable	Lubricate or
											loosen
9	Estimate	1.000	0.300	0.001	1.00	40	0.012		Use	More probable	

 $C_m = (v)\lambda_p \alpha \beta t$

Lyons; August 2, 2018

Fault Tree Analysis (FTA)

Stamatis, D. H. (2003). Failure Mode and Effect Analysis, 2nd edition. ASQ Quality Press, Milwaukee, WI, ISBN 0-87389-598-3. Retrieved May 25, 2018, from http://www.qualitypress.asq.org

Lyons; August 2, 2018

Lyons; August 2, 2018

RETH

RETH Risk Analysis (FMECA and PRA) Results

Strengths

Proven to be effective to determine quantitative and
qualitative risks

Probabilistic Determines required data Significantly developed Capable of utilizing all data Past use allows less effort and brainstorming Accounts for catastrophic failure and hazards

Determines single-points failures Determines small failures and cascading effects Helps improve systems (of systems)

Opportunities

Can determine system interdependencies

Can use criticality more within FTA Can use nonbinary logic and fragility curves Conditional probability of detection Determine more cascading effects

Can be improved/incorporated in resilience framework Can consider modularity to be resilient Efficiency in decision matrix/FMECA Can be easily changeable with advanced analysis Lyons; August 2, 2018

Weaknesses Lacks adaptability and recoverability Inapplicable to cope with unknown hazards

Not deterministic

May require experts and requires identification of rare hazards mixtures

Simplifications ignore combined failures Takes great effort and time FMECA necessitates team to brainstorm

Threats

May ignore some system failure modes Scrutiny if unexpected catastrophic failure May not determine particular cascading effects May not be feasible for complex systems May prove expensive **Requires instrumentation and time**