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Problem Definition

e Extraterrestrial habitats
are the next step in space
exploration

* Numerous hazards pose :
th reats to these habitats Temperature Variation ~ Meteorite Impacts Radiation

_Ca S ol

Purdue RETH

Just; August 2, 2018 Resilient ExtraTerrestrial Habitats



Potential Solution

Temperature Variation  Meteorite Impacts  Radiation

* GRAIL data shows lava tubes
on the Moon created during
volcanic eruptions

* Could potentially house
future habitats

 Lunar lava tubes are
estimated to be up to
several kilometers wide

TwistedSifter
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Hawaiian Lava Tube Formation

Molten Lava Crusted Lava
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Hawaiian Lava Tube Formation
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or freeze over from the outer edges
towards the middle.

Hawai’i Volcanoes National Park
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awaiian Lava Tube Formation
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Hawaiian Lava Tube Formation

folcano Video Productions

and the crust is thin.

Hawai’i Volcanoes National Park
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Kaumana Cave and Morphology

* Terrestrial lava tubes have
widths up to 30 meters

* Shape is determined by
topography and changes
in direction

Thurston’s Tube

Tourist Caves of Hawai'i Island.
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Topography

Marius Hills Lava Tube

16°

* Demonstrates the presence of
subsurface features on the
Moon

e Supported by multiple methods
using data from several probes
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Extraterrestrial Habitat Virtual Reality

Just, Lyons, Theinat, Maghareh
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Hawaiian Lava Tubes
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» Difference between displacement in
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Lunar Lava Tubes

* Geological Strength Index (GSl)
e Stable Tension Cut-off of 3% for

GSIl of 70
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Conclusions

e Lava tubes could
potentially house an
extraterrestrial habitat

* Hawaiian lava tubes help in
understanding their lunar
counterparts

e Lunar lava tubes can be
stable up to several
kilometers wide

TwistedSifter
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Future Work

* Exploring lunar lava tubes
via probes or manned
missions

* Further investigating
morphology and formation Fgawu

* Determining impact of
hazards on lava tubes
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Lava Tube Stability [Backup]

* Stability classifications
* Stable: No yielding
e Quasi-stable: < 50% vyielding
e Unstable: > 50% vyielding
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