Lunar Habitat Frame and Radiation Shielding Quantification, Mitigation, and Simulation

Hayley E. Bower, Rob K. Shaver, Dr. John P. Millis, Terry J. Pahls, Dr. Josiah Kunz, Daniel P. Gomez*, Dr. Shirley J. Dyke*, Dr. H. Jay Melosh*

Quantification

Understanding the radiation environment on the lunar surface is vital to lunar habitation. At least three types of ionizing radiation bombard the Moon and provide a significant threat to astronauts. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has gathered radiation data since 2009.

Mitigation

In order to mitigate the hazard, a shielding material must be selected. Using Geant4 Beamline, simulations have shown that certain materials and combinations of materials are effective at reducing the absorbed radiation. SPE are highly variable in their intensity and frequency, and shielding may not be an effective strategy. The energy and flux of protons in GCR is well understood and considered in this project. Dose limits are shown below for reference with cumulative doses.

<table>
<thead>
<tr>
<th>Age</th>
<th>Male (Sv)</th>
<th>Female (Sv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>35</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>45</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>55</td>
<td>3.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Career Dose Limits (in Sieverts) Corresponding to a 3% Excess Cancer Mortality for 10-year Careers as a Function of Age and Sex, as Recommended by the NCRP (NCRP, 1989; 2000)

Results

The simulations have been constructed, but take a significant amount of power to run. As such, the simulations with the human detector and the floor will be run over the next several weeks. Once the simulations have run, it will be evident how many particles will traverse the human body per second compared with how many particles hit the floor, and a conversion factor will be used to determine how long a human being can survive within the structure before reaching the radiation limits given by the NCRP.

Future Work

The figure below is a 3D model of the habitat frame put inside the larger shielding structure. It will provide support for the shielding material as well as an anchor for an interior inflatable habitat or some such structure. This model is modified from Brown’s thesis.

Citations


Acknowledgments

Special thanks to Dr. Millis, Prof. Pahls, & Dr. Kunz in the Department of Physical Sciences and Engineering at Anderson University, and Mr. Gomez, Dr. Dyke, & Dr. Melosh of Purdue University and the Resilient Extra-Terrestrial Habitats (RETH) Team for their guidance on this research project. In addition, special thanks to IDEA-U for funding our project to develop a prototype and perform testing. Finally, special thanks to the Anderson University Honors Program.

*Purdue University Faculty, Departments of Civil Engineering, Mechanical Engineering, and Earth, Atmospheric & Planetary Science, respectively.