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Background & Motivation
Grand challenge to design resilient extraterrestrial habitats | stren th_S o N w
Envision first Earth-independent human settlement Proven to be effective to determine quantitative and » Lacks adaptability and recoverabllity
Current risk-based techniques lack resilience qualitative risks * Inapplicable to cope with unknown hazards
Critiquing conventional reliability-based design Can create partial system resilience * May require identification of rare hazards mixtures
Avoid catastrophic disasters Accounts for catastrophic fallure and hazards
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Can be improved/incorporated in resilience framework * May not be feasible for complex systems
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