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ABSTRACT: We apply the adaptive biasing potential (ABP) method to
optimize the principal curve defining a conformational transition between two
known end states and to subsequently compute the one-dimensional potential
of mean force as a function of arc length along the principal curve. This ap-
proach allows the use of the ABP method in a collective variable space of
arbitrary dimension and offers several advantages over line-search methods.
First, configurations are neither generated along an initial path for the trans-
ition nor equilibrated during evolution of the path. Second, and most
importantly, the powerful sampling provided by the ABP serves to accelerate
the dynamics during the optimization and computation of the free energy.
Finally, the free energy is formulated as a potential of mean force that captures
changes in the reaction channel along the principal curve, in contrast to the
free energy profile evaluated from the local free-energy gradient in restrained
path optimization methods. We first demonstrate the ABP formulation of path optimization using a two-dimensional potential
surface and then with a more complex system of Src protein tyrosine kinase. The method is shown to be efficient and robust in
the case of rugged, free-energy landscapes.

1. INTRODUCTION

In this report we propose an efficient methodology for the
study of conformational transitions in biomolecular systems
and in general the study of any process that can be formulated
in terms of a reaction pathway. The problem of finding an ideal
reaction pathway is viewed here in three steps: First, to choose
suitable collective variables, second to optimize a path through
the collective variable space, and finally to compute the free
energy along the optimal path. The first of these steps, choosing
collective variables (CVs), is crucial but complicated given that
each system may be best suited by different CVs. We will
assume that this first step is completed and good CVs have
been chosen. The second step, to identify a pathway in the CV
space that is in some sense optimal, is the focus of this report.
Computing the free energy along the path is straightforward
once an optimal path is in hand.
Let Ω denote the space defined by the CVs. Our aim is to

elucidate a characteristic pathway through Ω and to com-
pute the free energy along that pathway when Ω is a high-
dimensional space. There are several existing frameworks for
this task,1−6 and there is a recent report which describes a
number of problems encountered by these approaches in
practice.6 Reference 6 deals specifically with the string method
in collective variables, but the technical difficulties encoutered
there will be similar for any approach that uses restraints to
localize trajectories to a path in Ω. The authors found that an
additional sampling technique, Hamiltonian exchange, was
required to achieve adequate sampling of the configuration
space in a reasonable time. Although not discussed in ref 6,
there is also the chance that roughness in the free energy land-
scape may frustrate a line-search type of path optimization.

It is also worth noting that the line-search methods compute
free energy of the optimized path from the local free-energy
gradient.1−3,5,6 This one-dimensional profile of free energy does
not capture important information about the reaction channel
width. Changes in the width of the channel will impact the size
and location of the barrier and could cause both attributes to
differ from the one dimentional profile.
Adaptive biasing force7,8 (ABF) and adaptive biasing

potential9−12 (ABP) methods allow one to compute the free
energy in a low dimensional Ω without employing restraints.
The notion that restrained sampling in free energy computa-
tions might impede convergence was used to motivate ABF
early in its development.7 An ABF or ABP formulation of the
string method would facilitate good sampling along the path in
Ω without any additional layers of methodology while still
providing a framework for free energy computation.
Here, we follow a natural means of adapting the ABF or ABP

paradigm to the problem at hand by considering the potential
of mean force (or free energy) along a curve γ in Ω, so that the
biasing force or potential is constructed on the one-dimensional
arc length along γ. A benefit of this formulation in terms of γ is
the use of an ABF or ABP method in a collective variable space
of arbitrary dimension. The recent development of the finite
temperature string method13,14 (FTS) affords a simple recipe
for optimizing the curve γ by computing the mean position of
trajectories in cross sections along the path and updating γ to
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coincide with that mean. This optimization scheme converges
γ to the “principal curve” for the transition.
To describe the principal curve, first consider a free energy

landscape with a single reaction channel, or valley, connecting
two stable states A and B. The principal curve is a curve that
runs through this channel. One may define a hyperplane at each
point along this curve such that the tangent of the curve is
orthogonal to the hyperplanes. The principal curve lies at the
point in each plane that corresponds to the mean position of
the system in that plane. We do caution that “orthogonal” has
to be interpreted in the correct coordinate space, as shown in
ref 14.
The simplification provided by defining a path with reduced

dimensionality in an otherwise complex space dates back at
least several decades where it allowed computation of the po-
tential of mean force (PMF) along a path defined by a sequence
of points through the configuration space while avoiding a
rigorous parametric definition of the path.15 The concept has
also been used in connection with transition state theory.16,17

Jońsson also described the fundamental component of updating
the path to coincide with the mean position in a cross section
to relax an initially subomptimal path. More recently, the idea
of updating the path to coincide with the average position in a
cross section was refined as an optimization protocol in the
finite temperature string method13 and later motivated in the
collective variable space as a means of overcoming the expected
roughness of the free energy landscape.14 Moreover, computing
the free energy as a function of the one-dimensional arc length
allows the computation of a free energy that will reflect changes
in reaction channel width. This quantity is more informative
than the one-dimensional profile as discussed above.
What we introduce below is an ABP formulation of the finite

temperature string13,14 or of the reversible work formulation of
free energy.16,17 This approach automatically, allows trajectories
to move along the pathway and does not confine them with a
restraint or cell wall. In fact, the biasing potential serves to
flatten the free energy along the pathway thereby accelerating
the transition. This feature mimics the improved sampling that
was observed for restrained trajectories while exchanging
restraint potentials6 but does so in a natural way without any
additional exchange algorithm. Finally, because the method
computes the principal curve, it allows γ to be optimized even
when the free energy is rugged.
A significant reduction in complexity also occurs with this

formulation because no initial path in configuration space must
be generated. No computational resources are spent generating
(e.g., via targeted, steered or biased molecular dynamics18) an
initial trajectory in the configuration space that spans the
conformational transition. Instead, one simply “draws” an initial
path through Ω and then launches ABF/ABP from the known
stable state(s). Equilibrated structures along the initial path or
any subsequent path are not required. Generating meaningful
initial paths through the configuration space is an active re-
search area6,18,19 and the present approach completely omits
this step.
In section 2 we develop the ABP method for sampling the

space around a one-dimensional curve γ in the collective variable
space Ω. In section 3 we present the algorithm for optimizing
γ and computing the potential of mean force by performing
simulations with the ABP method. In section 4 we present
numerical demonstrations and compare with the maximum flux
transition path (MFTP) method for a realistic model of a Src

protein tyrosine kinase and a smooth Ω. In section 5 we make
our concluding remarks.

2. ADAPTIVELY BIASED DYNAMICS
In this section we present our computational approach. This is
broken into four parts. First, the one-dimensional potential of
mean force along a curve in Ω is defined. Second, the biased
dynamics are proposed and third the biasing force in con-
figuration space is given. Lastly, we discuss discretization and
parameter choice.

2.1. Free Energy along a Curve. In the following we
denote the configuration space as . The collective variables
are ξ(x) where x ∈ and ξ ∈ Ω. The configuration space is
n-dimensional, whereas the CV space is N-dimensional. This
corresponds to a chemical or biological system with n/3
particles and N collective variables.
Employing a notation close to that of ref 14, we make the

following definitions regarding the path. Let the curve γ be
parametrized by ϕ(λ) with 0 ≤ λ ≤ Λ, where Λ is the total
length of the curve in Ω. Take ϕ(λ = 0) ∈ A and ϕ(λ = Λ) ∈ B,
where A and B are some particular well-defined basins in Ω. For
any λ ∈ [0,Λ], ϕ(λ) returns a point in Ω on the curve γ.
The collective variable space can be partitioned according to

the arc length λ by associating to each value of λ the set of
points in Ω that are closer to ϕ(λ) than any other point on γ.
Partitioning Ω this way defines hyperplanes that intersect γ.
The hyperplane at λ is given by the set of points Pλ =
{ξ |d(ξ,ϕ(λ)) < d(ξ,ϕ(λ′)) ∀ λ′ ≠ λ}, with the distance given by

∑ξ ϕ λ ξ ϕ λ ξ ξ ϕ λ= − −
=

−d D( , ( )) ( ( )) ( ) ( ( ))
i j

N

i i ij j j
, 1

1

(1)
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Throughout we use V(x) to note the potential energy function
and β = 1/kBT where kB is the Boltzmann constant and T is
temperature. The justification of this particular choice for d(·,·)
is given in ref 14. There it is shown that the level sets of the
commitor function are approximated by the level sets of λ near
the principal curve of the transition. The hyperplanes Pλ are
thus expected to approximate level sets of the commitor in the
vicinity of this principal curve.
The configuration space can be associated to Pλ by the

argmin function

λ ξ ξ ϕ λ λ=x d x( ( )) argmin[ ( ( ), ( )), ] (3)

This function returns the arc length λ corresponding to the
nearest point on γ, which is ϕ(λ).
The PMF (up to an unimportant additive constant) as a

function of λ could now be computed by integrating the Dirac
delta function δ(λ(ξ(x)) − λ) against the Boltzmann density on

(see eq 4 below). At each value of λ, the integration would
need to be performed over the whole plane Pλ. In addition to
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practical considerations, the integration over Pλ should be limi-
ted to a portion of the hyperplane that is near γ for two reasons.
First, the relationship between the commitor function and the
level sets of λ(ξ(x)) only holds in the vicinity of the path.14

Second, one would expect that far from ϕ(λ) there are structures
in the planes Pλ that do not resemble the set of configurations at
ϕ(λ). Including these structures in the PMF computation will
obfuscate detailed information regarding the reaction channel
being examined. These points motivate limiting the extent of the
planes Pλ away from ϕ(λ) when computing the PMF associated
with a particular reaction channel, which is our current goal.
By defining the sets Bλ = {ξ |d(ξ,ϕ(λ)) < R} in Ω, one can

form a tube around ϕ as the union of these sets, [ϕ] =
∪λ=0
λ=ΛBλ. The tube in the collective variable space is simply

the collection of all of the points in Ω that are within a distance
R from at least one point on the curve γ. (Choosing the radius
R will be discussed in the next section.) The tube can be broken
into slices Sλ by the intersection Sλ = [ϕ] ∩ Pλ. The slice Sλ is
the portion of Pλ that is inside the tube. In order to limit the
integration to Sλ, we introduce the “tube potential” as

ξ
ξ ϕ

=
∈

∞
ϕ

⎧⎨⎩V x
x

( ( ))
0 if ( ) [ ]

otherwise
[ ]

By adding this potential to the Hamiltonian, we focus only on
those configurations that fall within the tube in Ω. Notice that,
when λ = 0 or Λ, Sλ is a hemisphere, whereas for interior values
0 < λ < Λ, the slices Sλ are planes.
Finally, the free energy A(λ) (up to an additive, unimportant

constant ζ) of a slice Sλ that intersects the curve at ϕ(λ) is

∫ζ δ λ ξ λ= −β λ

α
α

β ξ−

→

− − + ϕZ x xe lim ( ( ( )) )e dA V x V x( )

0

1 [ ( ) ( ( ))][ ]
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where Z is a normalization constant and

δ λ λ
α

= −α
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2

2

In practice we will approximate eq 4 by making computations
with a finite value of α. Below, we use Aα to indicate this approxi-
mation. The strategy to compute Aα(λ) and error associated with
the finite α approximation are discussed next.
2.2. Biased Dynamics. We compute Aα(λ) via the fol-

lowing adaptively biased dynamics. The central feature of these
dynamics is that a bias potential, constructed on-the-fly,
gradually flattens free energy barriers resulting in an accelerated
sampling of the collective variable space. Initially the bias
potential is zero everywhere, and over time it adapts to mimic
the underlying free energy. These dynamics are a summary of
the results in ref 20 where it was shown that these dynamics are
equivalent to the well-tempered metadynamics.11

A trajectory xt is a solution to the biased Langevin equation

ξ λ ξ

β
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2
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t

where f is the Langevin friction coefficient, Bt is a standard
Brownian motion, and m is mass. The bias potential Vb, up to
an arbitrary constant, is

λ β λ=
−

− +−V t
b

b
c b h t( , )

1
ln[ (1 ) ( , ) 1]b

1
(5)

where
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t

0
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The histogram h(λ,t) counts visits to the region around λ and
the bias potential at λ increases with each visit so as to slowly
flood the stable states of A(λ). The size of the region around
λ is controlled by α. The bias potential is built from the
sampling history of xt and in the long-time limit is a good
approximation to −bA(λ) when α is small. We refer to ref 20
for a derivation of this bias potential. The parameters 0 < c and
0 < b < 1 appear in the definition of the bias potential and
control how the bias couples to the dynamics and what fraction
of the free energy will be canceled by the bias potential,
respectively. The coupling c has inverse time units.
The gradient of Vb in configuration space can be expressed

through the chain rule,

∑
λ
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= −
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∂
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for j = 1, 2, ..., n. The derivative ∂Vb/∂λ is computed from two
histograms h and h′ accumulated over the evolution of xt
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At t = 0, ∇Vb = 0, and h = h′ = 0 for all λ. The derivatives dξi/
dxj are straightforward, whereas ∂λ/∂ξi needs some explanation.
For a fixed value of λ, we define the following plane in Ω

ξ ϕ λ⃗ · − =λn ( ( )) 0

where the vector nλ⃗ is the unit normal for the plane. After
taking the gradient with respect to ξ

ξ ϕ λ∇ ⃗ · − =ξ λn[ ( ( ))] 0

and rearranging for ∇ξλ, we have

λ
ξ ϕ λ
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⃗ · − − ·
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This expression can be problematic when the denominator is
small, as discussed below. The gradient of Vb can now be
expressed in Langevin’s equation by using eqs 10 and 8 in eq 7.
We approximate the tube potential as a harmonic restraint

ξ ϕ λ
κ
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where ϕ(λ) is the point on the curve closest to ξ(x). This is a
good approximation when the force constant κ is large.
The free energy in eq 4 is estimated from the histogram

h(λ,t) as20

λ β λ= −
−α

−A t
b

h t( , )
1

1
ln[ ( , )]1

(12)
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The error associated with finite α in eq 12 is understood as
resulting from a convolution with the Gaussian δα and is
roughly characterized by ln[1 + α2].12,20 The following section
covering discretization motivates a very small α so this error
can be ignored in practice with little effect.
In summary, eq 12 can be used to compute the one-

dimensional free energy, or PMF, via the biased Langevin
equation given in eq 5. The last step to obtain a practical
method is to discretize time and γ and to specify values for the
parameters α and R.
2.3. Discretization and Parameter Choice. To discretize

the curve ϕ, divide the total length into NΛ equal segments and
replace λ with λi = (i−1)Λ/NΛ. The set of ϕ(λi) for i = 1, 2, ...,
NΛ are connected with linear segments, giving a piecewise
linear approximation to ϕ. In practice only the positions of the
points ϕ(λi) are needed, the linear interpolation between them
is not. The domain of the histograms h and h′ is now
discretized and the biasing force eq 7 is computed by
approximating λ(ξ(xt)) by the λi that is closest in value. For
a fine grid, this approximation is very small.
Specification of α is based on the discretization of ϕ and can

be related to a harmonic force constant12 k: α = (2kBT/k)
1/2,

providing some intuition for specifying α by connecting with
the more familliar concept of choosing a restraint strength.
Imagine that the restraint is used to hold a trajectory near a
specific plane and choose k appropriately. Bear in mind that this
analogy is simply to understand α. No restraint along λ is used
in this approach. In the numerical examples below k is a
multiple of kBT, which is common practice for restrained
simulations, and NΛ is fixed so that 2 ≤ αNΛ/Λ.
The condition on NΛ, 2 ≤ αNΛ/Λ, is such that the Gaussians

δα will be well represented by the discretization of λ. There is
one Gaussian δα centered at each discrete “grid” point λi for
i = 1, ..., NΛ and this condition on NΛ ensures that the Gaussians
overlap well enough to recover a smooth free energy. Also
notice that with the definition of V [ϕ] in eq 11, NΛ should be
large enough to avoid significant corrugation of the tube walls.
(Note that the wall of the tube V [ϕ] is exactly given by the
boundaries of the sets Bλ. If these sets do not overlap by much,
the tube walls will be rough.)
To discretize time, divide the interval [0,t] into Nt equal parts

of duration Δt = t/Nt. The Langevin trajectory xt is replaced by
a discrete-time trajectory xi and the total time is given by
t = NtΔt. In discrete time, the derivative in eq 8 becomes
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At each time step of the simulation, the histograms h and h′ are
updated by δα(λ(ξ(xi)) − λ) or ∂λδα(λ(ξ(xi)) − λ), respec-
tively, for all values of λ within 5 or 6 multiples of α of λ(ξ(xi)).
Only three arrays must be stored during this ABP: the

summations appearing in the numerator and denominator of eq
13 and the points ϕ(λi) in Ω.

3. OPTIMIZING ϕ(λ) AND COMPUTING Aα(λ)

Outlined here is an algorithm to converge an initial ϕ to the
principal curve for the transition. By defining the average in

discrete time and space with the dynamics driven by
+ +ϕV V V( )[ ] b
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for each λj, the principal curve can be defined as the curve
satisfying ϕ(λj) = ⟨ξ⟩j. The reweighting factor is

λ
λ

= − +
− +

β λ

λ

−⎛

⎝
⎜⎜
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The bias potential Vb is so far determined only to an additive
constant, as only the gradient of the potential is needed for the
dynamics. Here we take the liberty of choosing this constant so
that the zero of energy is not drifting in time. This relationship
between the bias and the histogram h is derived in reference 20.
The purpose of the reweighting factors in eq 14 is the
following: if the dynamics converge then the probability density
on is proportional to the Boltzmann factor

β− + +ϕe V V V( )m [ ] b

The reweighting in eq 14 ensures that the principal curve
computed from the biased dynamics is the same as what would
be computed from unbiased dynamics.
When the points ϕ(λi) fall along the principal curve,

evaluating eq 14 for each λi along ϕ would simply return the
point ϕ(λi). However, eq 14 is a conditional mean. It is
conditioned on the current ϕ and returns the principal curve
for the tube around ϕ. This is only equivalent to the principal
curve for the transition when eq 14 returns the current ϕ. Next
we discuss constructing the initial path and the computation of
some preliminary quantities. Then, we give an algorithm for
efficiently computing the principal curve for the transition.

3.1. Initial Path, R, and D(ξ). From unbiased dynamics in
A and B compute: ξA = ⟨ξ(x)⟩A, ξB = ⟨ξ(x)⟩B, σA

2 =
⟨(ξ(x)−ξA)2⟩A and σB

2 = ⟨(ξ(x)−ξB)2⟩B. We use ⟨·⟩s to denote
a time average taken over unbiased dynamics in state s. The
points ξA and ξB give an idea of the location of A and B in Ω
while σA and σB give a basic estimate of a tube radius. One last
thing that must be computed from the unbiased trajectories is
the tensor D(ξ) defined in eq 2. From the unbiased trajectories
one can compute ⟨D(ξ(x))⟩A and ⟨D(ξ(x))⟩B. We make the a
priori assumption that D(ξ) is a constant over Ω and checking
that the average of D(ξ) is statistically equivalent in A and B
validates this somewhat. This assumption was also made in
implementing the FTS method and is discussed in ref 14.
As we noticed earlier, S0 and SΛ are hemispheres. To get an

accurate PMF for the transition, ϕ(0) and ϕ(Λ) should rest
outside of A and B, respectively. This practice will keep the
volume of the hemispheres from corrupting the configurational
density in the planes Sλ near the minima of A and B. To do this,
simply draw a straight line from ξA to ξB and stretch the line by
10−15%. This stretched path serves as the initial ϕ and the
points {ϕ(i)}i = 1

NΛ are to be equally spaced along this initial path.
Only the points ϕ(i) must be defined; no equilibration or other
dynamics is needed. To be sure the hemispheres do not corrupt
the PMF, the end points are fixed throughout the computation
of the principal curve. We point out that while we have used a
linear path as the initial path, any initial path would suffice. The
linear path is used here for convenience.
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3.2. Optimizing ϕ. The algorithm employed here is as
follows: Given an initial ϕ0 ∈ Ω, the principal curve ϕ1 inside ϕ⎡⎣ ⎤⎦0

is converged. (The sense of “converged” is made precise below.)
The principal curve in ϕ⎡⎣ ⎤⎦1

is then converged and so on. After

collecting i updates of the principal curve, the distance between
pairs of curves F(ϕj,ϕi) (defined below) can be computed for j = 0,
1, 2, ..., i − 1. The distance between ϕ0 and ϕi will be large and as j
approaches i the distance will shrink. If a set of the i curves are
falling in the same reaction channel and differ only in fluctuations,
the distance between ϕi and any curve in this set will be roughly
the same. The graph of F(ϕj,ϕi) against j will show a plateau when
a series of curves lies in the same channel as ϕi. In an ideal case
with no statistical noise, the plateau will be at F(ϕj,ϕi) = 0 for a
given reaction channel. Because there will be noise in the statistics
giving rise to the curves ϕ, the plateau will occur at a nonzero value.
We define the distance F(·,·) as a Frećhet distance. The

ordered sequences {ϕi(λl)}l = 1
NΛ and {ϕj(λl′)}l′=1

NΛ define polygonal
curves in Ω. A “coupling” between ϕi and ϕj is a sequence of links

ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ ϕ λ′ ′ ··· ′( ( ), ( )), ( ( ), ( )), , ( ( ), ( ))i l j l i l j l i l j l m1 2 m1 2

where l1 = 1 (the first point on the path), lm = NΛ (the last point
on the path), lq+1 = lq, or lq + 1 and similarly for l′. This scheme
for indexing the segments is given in ref 21. This choice respects
the ordering of the polygonal segments along the two curves and
precludes backward coupling along the curves. This coupling also
allows a point on one curve at one arc length to be coupled to a
point on the other curve that is at a different value of the arc
length. In general, the two paths need not have the same number
of points. The distance between ϕi and ϕj is finally

∑ϕ ϕ ϕ λ ϕ λ=
=

′

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥F

m
d( , ) min

1
( ( ), ( ))i j C q

m

i l j l
1

q q

(15)

where C is the space of all couplings between ϕi and ϕj and m is
the number of links in the coupling. This is a variant of the discrete
Frećhet distance21 between two polygonal curves where an average
distance is used instead of the maximum distance over all
connections in the coupling. We found that using an average rather
than the maximum results in a smoother, easier to read graph of F.
In Figure 5 below an example of the graph of F(ϕj,ϕi) can be seen.
To fix a stopping time for the optimization of ϕ, we compute

the mean of the curves on the plateau of F, denoted ⟨ϕ⟩. If an
additional observation of ϕi does not significantly alter the
mean, the algorithm is terminated. The meaning of “significant”
is controlled by fixing a tolerance. Below we use ⟨ϕ⟩old and
⟨ϕ⟩new to distinguish between the average of curves on the
plateau before and after a new observation, respectively.
Consider the ith iteration of such a scheme. At the beginning

of the ith iteration, no blocks of dynamics have been carried
out, NB = 0, and the ABP has accumulated no information,
Vb = 0. The dynamics of the ith iteration are driven by

+ +
ϕ −

V V Vb
i[ 1]

. The algorithm for the ith iteration is as

follows.
(1) Evolve M trajectories, or replicas, with the potential
+ +

ϕ −
V V Vb

i[ 1]
(where Vb is evolving) for a block of Nt steps,

update the number of blocks NB = NB + 1.
(2) Compute an observation of ϕi at block NB
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and apply a smoothing and spacing routine (for example from
FTS14 or as described by eq 18).
(3) If all slices Sλ of [ϕi−1] have been visited times

(a) save the principal curve ϕi ← ϕ̂NB

(b) save the simulation time of the ith iteration ti = NB ×
Nt × Δt

(c) set i = i + 1, NB = 0, initialize ABP and center the tube
potential on ϕi

(d) check the graph of F for plateau
• if no plateau, go to 1.
• if there is a plateau but F(⟨ϕ⟩old,⟨ϕ⟩new)>ε, go to 1
• if there is a plateau and F(⟨ϕ⟩old,⟨ϕ⟩new) <ε, stop.

For economy the observations of ϕi should be monitored
frequently after small intervals of dynamics. The interval here is
set by Nt. NB is the number of these intervals in a given tube
and is not predetermined and thus the total computation time
is more meaningful than the number of updates of the curve.
It is assumed that there are M initial phase points, ideally half

in A and half in B, at thermal equilibrium from which
independent ABP simulations can be launched. Each trajectoy
is independent of the others and evolves with its own adaptive
potential Vb. The M trajectories evolve in parallel so the clock τ
is representative of the cost of the simulation while M × τ is
representative of the total sampling.
While optimizing ϕ, the radius of the tube R should be larger

than max[σA,σB] to allow the possibility of exploring multiple
channels. To avoid the possibility of numerical instabilities
resulting from eq 10, we approximate ∇ξλ with

λ∇ = ⃗

⃗ ·
ξ

λ

λ
ϕ λ

λ
∂

∂

n

n ( )
(17)

while optimizing the principal curve for the transition. During
the free energy computation, we use a more narrow tube and
use the full gradient in eq 10.

3.3. Computing Aα(λ). Once we have converged the
principal curve for the transition, which is ⟨ϕ⟩ at the exit of the
algorithm in the previous subsection, computing the free energy
is a straightforward application of the ABP dynamics. The
computation is done in a step separate from optimization of the
principal curve so that the histograms h and h′ only contain
information about the final, converged principal curve for the
transition. To compute the free energy we suggest R is set to
max[σA,σB] while no other parameters need to be adjusted. One
may imagine several schemes for choosing R. We employ a very
simple one here that in general is not “bullet-proof”. It is
possible to measure collisions with the tube wall, something like
the pressure inside the tube, and to choose the radius to
minimize or control the number of these collisions. Here, we
simply fix the radius.
It may be most efficient to allow the trajectories to combine

information about the free energy with some regular frequency
but we do not employ these techniques here.22 The free energy
is recovered via eq 12.

4. NUMERICAL EXAMPLES
4.1. 2D Demonstration and Further Implementation

Details. We use the two-dimensional potential from refs 23
and 24 to give a concrete example of optimizing the curve ϕ
and of computing the PMF Aα(λ). The surface in Figure 1
proposes two mechanisms for transitioning from state A to
state B. There is a direct route which crosses a high barrier and
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a more curved, indirect route that crosses a lower barrier. The
two pathways are separated by a second order saddle indicated
by + in Figure 1. At the thermal energy kBT = 0.07, the lower
barrier is preferred by unbiased dynamics.24

The initial straight-line path ϕ(λ) (shown in panel A of
Figure 2) was discretized so that αNΛ/Λ = 20 and α2 = 1/1200,
which can be viewed as a restraint force constant of 2400kBT
(NΛ = 2000). This strong choice for α provides more resolution
than what is needed, but it ensures the errors associated with
finite α are small and does not incur an increase in overhead.

We found that σA = 0.2 and the tube radius was set to 4σA to
compute the principal curve.
In the first iteration of the algorithm given in section 3.2, the

estimated principal curve ⟨ξ⟩λ (shown in panel A of Figure 2)
moves from the channel with the higher energy saddle to the
channel with the lower energy saddle. This is consistent with
what we would expect from a trajectory confined to the plane at
the ridge between A and B; the trajectory should spend more
time near the lower energy saddle. The principal curve for the
reaction converges after eight updates and is shown in Figure 2
along with the final slices, Sλ.
It is possible to sample different mechanisms if, and only if,

the tube is wide enough to encompass them and if each Sλ
can be sufficiently sampled. Local roughness on the free energy
surface would likewise be easily overcome. (Sampling two
channels of equal probability would force the principal curve
to lie between the channels rather than in one channel. See
ref 14 for a discussion of this and similar situations.) Of course,
if the tube is very narrow multiple channels cannot be
sampled. In general the optimal tube width will be unknown.
We present here only one of many possibilities for specifying
the width.
Computing the PMF is a straightforward application of the

biased dynamics generated by eq 5 where λ is the collective
variable and the gradient of λ is given by eq 10. We use the
same bias parameters that were used to compute the principal
curve for the transition. We set the tube radius to R = σA = 0.2.

Figure 1. There are two stable states labeled A or B, two first order
saddles labeled x, and one second order saddle labeled +. Contours are
placed at intervals of kBT.

Figure 2. (A) Initial path shown in black and the first estimate of the principal curve shown in orange. The blue circle indicates the width σA as
described in the text, and the tube radius for the principal curve calculation was 4σA. Every 30th slice, Sλ, is shown in black. (B) The current path
(black) and the estimate (orange) after four iterations. (C) The current path (black) and estimate (orange) after eight iterations. (D) The final tube
is based on the principal curve after eight iterations. The width of the tube is σA = 0.2 and is highlighted in blue.
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The free energy is computed from the adaptively biased
dynamics by eq 12. We assume convolution errors are small
because α is small. As a comparison, eq 4 was computed by
direct numerical integration. The results are shown in Figure 3

along with the potential energy evaluated at the principal curve.
The small difference between the PMF and the potential energy
results from a narrowing of the reaction channel inside the
tube. The tube has a finite width and the value of the potential
energy across the tube varies significantly compared to β near
the dividing surface for the transition. This constitutes a
narrowing of the channel. Depending on the shape of the
reaction channel within the tube, the barrier in the PMF may
not in general align with the barrier on the underlying surface.
The entropic contributions to the PMF provide important
information that would be overlooked when evaluating the
many dimensional free energy profile along the one-dimen-
sional principal curve. Typically, only the one-dimensional
profile is computed (using the local free energy gradient) and
information about the shape of the reaction channel does not
come to bear on the results. It is important to keep in mind that
if the tube is more narrow than the reaction channel, the
entropic contributions would be missed. The effects of tube
width are shown for this simple case in the inset of Figure 3.
The width estimated from σA is enough to capture the entropic
contribution made by the positive curvature mode at the saddle
point for transition. This is of course not generally true and one
will not be able to ensure that all entropic conributions are
captured.
The effects of tube width on the PMF are demonstrated in

the inset.
We note that the present method requires a more aggressive

smoothing than string methods for two reasons: (1) the number
of “nodes” (i.e., the points ϕ(λi)) is very large compared to
implementations of the string method and (2) we need to
minimize the number of intersections among Sλ. The noise in
the mean at each plane can result in extremely sharp turns
of the estimated curve because the planes are very close
together. To smooth the curve, we do not employ the
smoothing scheme from ref 1, which has little impact on paths
with many images and thus requires a number of iterations to
smooth the path. Instead, we choose to mollify the principal

curve. This approach results in an easy-to-control algorithm and
requires far fewer iterations than the smoothing from the string
method. We use the mollification
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where dλ is the distance between images on the path and n is
some integer controlling the strength of the smoothing. We
used ϕraw to indicate the raw, unsmoothed but equally spaced
data from simulation. Once one estimate of the principal curve
is computed, the smoothing and respacing should be tuned, by
considering different values of n in eq 18 to give the curve a
satisfactory amount of smoothness. This tuning only needs to
be done once in our experience but more iterations could be
required if the original data are very rough.

4.2. Src Kinase Go̅ Model. We consider the conforma-
tional transition of the ∼30 kDa catalytic domain of a Src family
protein kinase, Lyn, between a catalytically active and inactive
form. The energy function used in this study is a double-basin
Go̅ model that features two energy basins corresponding to the
active and inactive structures of the molecule. It was
constructed by merging two single-basin Go̅ models Vact and
Vina via the exponential average:

= − − + + −V V V
1

ln{exp[ ( )] exp( )}double act ina

(19)

where is an energy offset modulating the relative stability of
the two states and a coupling constant controlling the barrier
height. In the present study, was set to −4.0 kcal/mol and
was set to 0.02 mol/kcal. Similar procedures for merging two
Go̅ models have been described elsewhere.25,26 The individual
single-basin models were built following the Go̅ potential
described by Karanicolas and Brooks,27,28 taking the active and
inactive homology models of Lyn reported in ref 29 as
reference structures. More details of this double-basin Go̅
model can be found in ref 30. The coarse-grained inactive and
active structures are shown in Figure 4, where the main struc-
tural features are labeled.
Below we make a comparison between the ABP method

described above and the MFTP method.5 The MFTP behaves
like a minimum free energy path with the addition of a tem-
perature dependent curvature penalty. At zero temperature the
penalty vanishes and the MFEP is recovered. Because the
MFTP differs from the string method only in a single term,
which is only weakly influential in the present case, the fol-
lowing comparison is thus in essence between the ABP method
and the string method in collective variables.1,6 A number of
difficulties faced by the string method were noted in the
Introduction above and reviewed in ref 6.

4.2.1. Collective Variables. For this study we use seven
collective variables, selected on physical grounds and used
previously to study the mechanism of activation in the Src-Go̅
model described above.30 Each of the CVs is a sum of Cα pair
distances that connects one region of the molecule to another
region of the molecule. Figure 4 identifies the regions, and Figure 6
includes a list of the CV group pairs. The CV are defined by

∑ξ =
−

−=

r i r i

r i r i
r i

( ) ( )

( ) ( )
( )i

j

m
j j

j j
j

1

ina act

ina act

i

Figure 3. Potential energy and the PMF along the principal curve (as
shown in panel D of Figure 2). The PMF computed from the biased
dynamics is in agreement with the result obtained by direct numerical
integration of eq 4.
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Here, mi is the number of pairs in the ith CV, rj(i) is the pair
distance for the jth pair in the CV. The reference values rj

act and
rj
ina are the equilibrium distances computed from the active and
inactive reference structures, respectively. The number of pairs
in a CV ranges from three to twenty, and the list of the exact
pairs is given in ref 30.
Several initial paths were optimized in ref 30 and each one

converged to the same basic mechanism, implying the space Ω
is smooth. Some small degree of variability was observed in the
CV describing the motion of the A-loop near the N-lobe
(shown in green in Figure 6). Note that only the half of the A-
loop that is closest in residue number to the N-lobe was used in
the collective variables. The C-terminal half closest in number
to the C-lobe was found to be very mobile in another study and
was therefore omitted from the CV.30 This C-terminal section
of the A-loop is transparent in Figure 4.
4.2.2. ABP Parameters. For the ABP computation, we find

σA = 6 Å and σB = 7 Å and optimize the principal curve with
R = 15 Å, about 2 times larger than max[σA,σB]. We use an α that
equates to a force constant of 25kBT. This value is 2.5 times
larger than the value used to restrain the trajectories in MFTP.
For the tube potential, we use a force constant of 100kBT. This
choice for α and the distance between ξA and ξB (the mean
positions described in section 3) suggests that we cut the initial
linear path into NΛ = 5000 segments. This resolution is higher
than suggested in the Discretization subsection but it does not
sacrifice much in the way of efficiency. We expect the initial
linear path to take some curvature during optimization and we
should make sure that the optimized path still satisfies the rule
2 ≤ αNΛ/Λ. One could choose to do so by optimizing the number
of segments at each update during the principal curve calculation,
so that the number of segments is always minimized. This would
help efficiency particularly when the dimensionality of Ω is very
large. In a large dimensional Ω, the computational overhead is
manifest in evaluating λ(ξ(x)) = argmin[d(ξ(x),ϕ(λ)),λ]. In this
example, we fix NΛ for the whole computation.
To compare to MFTP, we run the algorithm from section 3.2

with 30 replicas. The MFTP comprises 40 nodes, and the
MFTP parameters (e.g., the path time step, equilibration time
and sampling time) were adopted from ref 30. The MFTP
converges well with a sampling time (per node on the path) of
just 0.05 ns and an equilibration time of 0.005 ns.

For the ABP computations here, we use dτ = 0.055 ns to
match the block time of the MFTP. We use = 100 and ε =
0.05 Å to control convergence of the principal curve.
designates the minimum number of times that each plane must
be visited before accepting an estimate of the principal curve
inside a tube. The uncertainty of the principal curve for the
transition is contolled by ε. These parameters were introduced
in section 3.2. These choices were made with no
experimentation. The 30 replicas were initially split evenly
between the active and inactive states: 15 trajectories begin in
the inactive state and 15 trajectories begin in the active state.
The initial configurations are simply thermally equilibrated
structures in the active and inactive states. The initial path was
constructed as a straight line.
The biasing parameters were b = 0.9 and c = 0.1Δt−1 for all

computations. This choice of c limits the time derivative of the
bias to roughly kBT/11

= Δ
+ −

−
c

t
b(11 1) 1

1

This relation comes from equating the maximum of the time
derivative of the bias potential with kBT/11. Using b = 0.9
implies that about 90% of the free energy barrier along λ will be
canceled by the bias.

4.2.3. Principal Curve and PMF. In Figure 5 we show the
time required to converge the principal curve for the MFTP

and the ABP. While it is not possible to compare the values of
the Frećhet distances directly, we may compare the simulation
time required to reach a plateau for the two methods. The ABP
scheme is seen to be slightly more efficient here but the stepsize
of the MFTP updates could potentially be further optimized.
That the ABP approach is competitive likely results from the
fact that a single update might yield a large displacement of the
path, as is evident in the steepness of F(j,i) in Figure 5. Note
that we used the Euclidean distance instead of d(·,·) from eq 1
in eq 15 after verifying that this change of metric does not alter
the results. The use of the Euclidean metric is afforded here
because all of the CV have the same units. To estimate the
computational efficiency of the ABP method, we track the total
simulation time rather than using the number of iterations as
the computational time (number of blocks) needed to converge

Figure 4. Inactive and active forms of the kinase domain of a Src-
family member, Lyn. The main conformational differences between
the two forms are changes in the A-loop (yellow), αC helix (green),
and relative orientation of the N- (red) and C-lobes (blue). The
structures shown are homology modeled from PDB entries 1QCF
(inactive) and 3LCK (active).29

Figure 5. Frećhet distance, F(j,i), for ABP and MFTP, where the path
at iteration j is compared to the final path at iteration i. The total
computational time for the j-th iteration is shown on the abcissa.
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the principal curve varies for each iteration. The Frećhet
distance to the final path is therefore shown as a function of the
total simulation time in Figure 5.
While the purpose of this report is not to discuss details and

relevance of the computed path, the principal curve for each
CV is displayed in the lower panel of Figure 6 and in the upper

panel are results from the MFTP. This path is discussed in
detail in ref 30, and we find that the MFTP and the ABP
converge to the same basic mechanism.
The PMF from ABP (Figure 7) is computed by using the full

biasing gradient in eq 5 (i.e., using eq 10 rather than 17). We
compute the PMF with R = 7 Å. The PMF is computed by
allowing the 30 replicas to evolve independently for 0.11 μs.
The PMF Aα(λ,t) is computed from

λ β λ λ= −
−α

λ

−A t
b

h t h t( , )
1

1
ln[ ( , )/max[ ( , )]]1

(20)

where the 30 independent histograms are combined as

∑λ λ=
=

h t h l t( , ) ( , , )
l

M

1 (21)

In Figure 7 A(λ,t) is compared to the one-dimensional “free
energy” found with the MFTP. We use “free energy” to high-
light the fact that the string method evaluates the multidimen-
sional free energy at points along the path. This “free energy” is

a function of the many dimensional collective variable ξ(x).
The quantity Aα(λ), computed here, is a true potential of mean
force and contains information about the shape of the reaction
channel that the string or MFTP would be insensitive to.
We estimate the level of convergence by comparing the 30

independent estimates of the free energy with the global
estimate given by eq 20. An estimate of the PMF can be
computed for each replica of the dynamics by

λ β λ λ= −
−α

λ

−A l t
b

h l t h l t( , , )
1

1
ln[ ( , , )/max[ ( , , )]]1

(22)

If the dynamics are ergodic, Aα(λ,∞) = Aα(λ,l,∞) for all l. The
variance

∑σ λ λ= −α α
=

A l t A t
1

29
( ( , , ) ( , ))

l

2

1

30
2

or the standard deviation σ, among the individual PMF
therefore gives an indication of convergence. The estimated
error in the mean, σ/√30 is shown in Figure 7. We stress that
this estimate is a much more strict notion of convergence than
what would be used to estimate error for the string or MFTP,
where each node on the path independently produces an error
at a point along the path. In contrast, the error estimate for the
ABP result requires each replica to produce a reasonable esti-
mate of the PMF, not simply a resonable estimate at one point
on the PMF. With this in mind, we note that the simulation
cost associated with the ABP approach, which computes the
PMF, was roughly 4.5 times smaller than the computational
cost associated with the restrained sampling of the MFTP/
string for the same level of error, 0.5 kcal/mol. This speaks to
the efficiency of the adaptively biased sampling.

5. CONCLUSION
We have developed and tested an adaptively biased approach to
computing the principal curve and PMF along that curve. The
result is an efficient and robust computational tool for studying
conformational transitions in biological or chemical systems
where the free energy landscape is expected to be rugged. This
method affords efficient sampling without the use of additional
computational tools, as have been used in conjuction with the
string method.6 Because the principal curve is the targeted

Figure 6. Results of the ABP computation and the MFTP
computation are shown here. The MFTP is shown with points
while the principal curve is shown with smooth lines.

Figure 7. PMF from ABP (shown in red) and the one-dimensional
free energy from MFTP (shown in green). The estimated error for the
ABP result is shown in blue.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp304720m | J. Phys. Chem. B 2012, 116, 11046−1105511054



object, rugged free energy landscapes will not trap the opti-
mization.14 With the use of an ABP-dynamics comes the added
benefit that no initial path in the configuration space must be
generated and no time is spent equilibrating images in the
configuration space at any point in the algorithm. These two
features contribute significantly to the efficiency and ease-of-use
of the method. In a benchmark of the method we observe this
ABP approach is twice as fast as the maximum flux path (or
similarly the string method) while neglecting the time required
to obtain an initial path for the MFTP. In practice the effort to
generate the initial path is significant6,19 and is not always
repeatable.18

The present approach computes a potential of mean force
along the principal curve. The MFTP,5 string method,1 and
swarm method2 only evaluate the free energy along a line in the
collective variable space and thus omit information about the
width of the reaction channel. Changes in the width of the
channel can have a great impact on the free energy profile,
altering both the height and location of barriers. In the present
case, the PMF along the principal curve will correctly capture
this additional information.
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