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ABSTRACT: We asses the ability of a distance correlation coefficient (DiCC), calculated from distance covariance, for detecting
long-range concerted motion in proteins. We establish a set of criteria for ideal correlation coefficient values based on the
coefficient of determination in multidimension, R2. We compare in detail DiCC and conventional correlation coefficients against
these criteria. We demonstrate that, in contrast to conventional correlation coefficients, which capture long-distance correlation
adequately only with certain restrictions in multidimension, DiCC reflects appropriate correlation in both one-dimension and
multidimensions. Finally, we demonstrate the usefulness of DiCC for assessing long-distance correlated fluctuation in protein
dynamics.

1. INTRODUCTION

Concerted, low-frequency motions are inherent to large or
multidomain proteins and can be essential for proteins to carry
out their function;1 particularly those involving allosteric pro-
cesses. Large-scale, concerted motion implies correlated
fluctuation of different parts of the protein separated by relatively
long-distance. Atomistic molecular dynamics (MD) simulation
of proteins has the potential for revealing concerted motions in
great detail. Nonetheless the assessment of long-range correlated
motion from simulations has so far been elusive except for a small
number of cases.2 A correlation coefficient (CC) can be defined
to quantify correlation between two random variables, including
atomic fluctuations in the case of proteins. The most widely used
CC between scalar variables is Pearson’s correlation coefficient
(PCC). The displacement vector correlation coefficient (VCC)
is an extension of PCC to quantify correlation between two
positional vectors. Some recent insightful usages of VCC are
reported in refs 3−5. VCC depends on the cosine of the angle
between the vectors and is most sensitive when the vectors are
parallel.2,6,7 To overcome this shortcoming of VCC, a few studies
have used the generalized correlation coefficient (GCC)7−9 or
radial correlation coefficient (RCC)2 to detect correlation
between atomic fluctuations of proteins. In previous work,2 we
exploited the radial symmetry of icosahedral viral capsids and
found long-range correlated motions between residues 55 Å
apart in human rhinovirus using RCC, which is a PCC on the
norm of position vectors. RCC is highly useful when applied to
systems with radial symmetry, but it is insensitive to azimuthal
fluctuation. GCC is an excellent CC between scalar random
variables; however, in multidimensions, GCC does not combine
the one-dimensional CCs in a suitable way to investigate
concerted motions. In this article, we asses the ability of a dis-
tance correlation coefficient (DiCC),10,11 calculated from
distance covariance, to capture correlation without imposing
any assumption on the time series of the vectors. A comparison of
DiCC with VCC, RCC, and GCC elucidates the merit and weak-
nesses of each and the potential of DiCC for detecting long-range
concerted motion in proteins.

2. RESULTS
2.1. Correlation Coefficients. DiCC between two vector

series, {A} and {B}, is defined as
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where ν(A,B) is the distance covariance between the vectors. Let
us assume that the vector series, {A} and {B} have n entries each
and the ith entry in {A} is denoted by Ai. If {A} and {B} are
position vectors of two atoms from a simulation study then Ai is
the ith saved position vector of one atom. Distance covariance is
defined as
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The following steps are needed to calculate αij from {A}.

1. Build the n× nmatrix, a, from {A}, where aij is the distance
between the ith and jth entries of {A}: aij = |Ai − Aj|

2. Average the rows of a: ai. = (1/n)∑jaij
3. Average the columns of a: a.j = (1/n)∑iaij
4. Average all elements of a: a.. = (1/n2)∑ijaij
5. Build the n× nmatrix α from awhere αij = aij− ai.− a.j + a..
VCC and GCC between the vector series {A} and {B}, and

RCC between {Ar} and {Br}, the norms of A and B, respectively,
are defined as follows:
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where ⟨...⟩ is the ensemble average or average over all entries in
{A} and {B}, I is the mutual information between {A} and {B},
calculated using the method developed by Kraskov, Stogbauer,
and Grassberger,12,13 and d is the dimension of vectors A and B.
It should be noted that calculation of VCC and GCC require

the dimensions ofA andB to be the same, while the calculation of
RCC and DiCC does not impose any such restriction.
2.2. Coefficient of Determination. If the dependency

between two scalar random variables is known, then the coeffi-
cient of determination,14 R2, can be considered a measure of
correlation between the variables. In the case of a linear depen-
dency, R2 is 1 when the variation in one of the variables can be
determined exactly by the variation in the other, and R2 is zero
when the variation in one cannot be determined at all by the
variation in the other. If the dependency is nonlinear, we can refer
to Nagelkerke.15

R2 between two scalar variables is a scalar quantity. In the case
of two vectors of dimensionm and n, we can define R2 as am × n
matrix where Rij

2, the ijth component of the matrix, is the
coefficient of determination between the ith component of one
vector and the jth component of another vector. An example of
such a matrix is given later in the article.
A CC indicates the strength of the relationship between

random variables. For a CC to be practical, physically meaningful
and robust in the context of atomic fluctuations, it should satisfy
the following criteria:

• be a scalar quantity
• equal 1 when R2 is a unity matrix, and the dependency

between the random variables is linear
• equal 0 when R2 is a null matrix
• if R2 between a pair of vectors is identical to R2 between

another pair of vectors, then the CC should be similar in
both cases

• be independent of coordinate system

While we were developing this assessment based on R2 of
coefficients for detecting concerted motions in proteins, a study
appeared16 in which similar criteria were proposed to establish
associations between scalar data sets. Reshef et al. showed that,
for nonlinearly dependent random variables, none of the
established CCs becomes 1 even when R2 is 1, and the sensitivity
of CC calculated with different methods depends on the specific
functional form of the dependency.16 Accordingly, for practical
purposes, we demanded the second criteria stated be true only
for linearly dependent random variables, although we would like
it to be true in general.
2.3. Correlation Coefficients in Multidimensions. To

compare the performances of different CCs, we calculated the CC
between the positions of two particles A and B specified by their
two-dimensional position vectors, A and B, as shown in Figure 1.
We can write

θ= ̂ + ̂ = ̂ + ̂θA r A A i A jA r x y

θ= ̂ + ̂ = ̂ + ̂θB r B B i B jB r x y (4)

where i ̂and j ̂are unit vectors in Cartesian coordinate system and
r ̂ and θ̂ are unit vectors in the spherical coordinate system. The
value of the CC obtained from the different parameters are
compared to the known coefficient of determination between the

components of the vector. If Br can be expressed as a linear function
of Ar, f(Ar), then the coefficient of determination, R

2(Br,Ar) is
14
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In the two-dimensional model, we define

δ= = + Δ +B f A A r r( )r r r

θ= = + Δθ θ θB f A A( ) (6)

where Δr and Δθ are constants and δr is a random variable
normally distributed, with mean zero and variance σr

2.
To build a series {A}, we generated 100 000 normally dis-

tributed values of Ar with mean value of 10 and variance of σAr

2 = 36.
We fixed the value of Aθ to π/4. We independently generated
another 100 000 normally distributed values, with a mean of 0
and variance of σr

2 = 16, to build {δr}. For a particular value ofΔθ,
we built {B} from eq 6withΔr = 3.0.We generated 90 such series
of {A} and {B} while varying the value ofΔθ from 0 to π/2. In all 90
series, σtot

2 = σAr

2 + σr
2 and σerr

2 = σr
2 in Br. Hence,R

2(Br,Ar) = 1− σr
2/

(σAr

2 + σr
2) = 0.69. Variances of Bθ and Aθ are zero as their values

are fixed. Also, σerr
2 is zero in Bθ. We can still define R2(Bθ,Aθ) in

such a case from the limit σtot
2 → 0, R2(Bθ,Aθ) becomes 1 when

σerr
2 = 0. Since angular and radial components are independent of
each other, R2(Bθ,Ar) and R

2(Br,Aθ) are zero. So, the expected R
2

between r ̂ and θ̂ components are
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We calculated the DiCC, VCC, and GCC of (B,A) and DiCC,
RCC, and GCC of (Br,Ar). The values of the correlation
coefficients between (B,A) are plotted as a function of Δθ in 2.
For reference, the PCC of two linearly dependent random scalars
is equal to (R2)1/2, the square root of the coefficient of deter-
mination between them, which is 0.83 here. DiCC of (Br,Ar) and
(B,A), dotted and solid blue lines in Figure 2, respectively, have
identical values of 0.81. Uncertainty in determining Br from Ar in
one dimension andB fromA inmultidimension appears only due
to the random variable δr, and the DiCC values in one dimension
and multidimensions correctly reflect that. In Figure 2, RCC of
(Br,Ar) (red dotted line) and VCC whenΔθ = 0 (green solid line)

Figure 1. A and B are two particles with their position vectors A and B
respectively. Br = Ar + Δr + δr and Bθ = Aθ + Δθ where Δr and Δθ are
two constants and δr is a normally distributed noise with mean zero and
variance σr

2.
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become exactly (R2)(Br,Ar). VCC, however, decreases monotoni-
cally to 0 asΔθ increases from 0 to π/2 and changes sign for π/2 <
Δθ < π. In multidimensions, VCC between two random vectors is
the VCC value when the vectors are parallel multiplied by the
cosine of the angle between them.
RCC is independent of Δθ and reproduces R; however, it

depends on the position of the origin of the coordinate system as
the definition of the radial component of motion depends on the
position of the origin. To illustrate this limitation, we used the
series of {A} and {B} for Δθ = π/2 and calculated RCC of
(Br,Ar), while moving the origin along the x-axis. The inset of
Figure 1 shows how RCC changes as a function of the position of
the origin on the x-axis of original coordinate frame.
That a GCC-like quantity can be used to define correlation

between Gaussian random scalars was first suggested by Joe.17 For
this case, theGCCof (Br,Ar) becomes exactlyR(Br,Ar), as evident in
Figure 2. However, in multidimensions, the GCC of (B,A) is much
higher, even though the source of uncertainty in determining Br
from Ar is the same in determining B from A. If the R2 matrix is
diagonal and λi

2 are it is diagonal elements, then GCC = (1 − (∏i
(1 − λi

2))1/d)1/2, where d is the dimension of the vectors. The
derivation and the physicalmeaning of the above relation is explained
in the Supporting Information, Note 1. Accordingly, the GCC of
(B,A) = (1 − ((1 − 0.69)(1 − 1))1/2)1/2 = 1. Irrespective of the
value of R2(Br,Ar), the GCC of (B,A) is 1, as R2(Bθ,Aθ) = 1. The
scheme with which GCC combines one-dimensional PCC values
is not suitable to find association between positional fluctuations.
In the model illustrated with Figure 1, ρAxAy

and ρBxBy
are close to

one. In protein dynamics, however, CCs between the components
of a vector are usually much smaller. Distribution of CCs between
the components of position vectors calculated from a protein
dynamics simulation is given in the Supporting Information, Note 2
and Figure S1. To check the performance of DiCC and GCC as
the correlation between the components changes, we generated
(B,A) with

= ( )
B

B
R B A( , ) 0.49 0.49

0 0
x

y

A A

2

x y

while varying the correlation between ρAxAy
from 0.0 to 0.99.

DiCC of (B,A), shown in the solid blue line in Figure 3,
changes very slightly as ρAxAy

varies from 0 to 0.99. The GCC of

(B,A), shown in solid red line in Figure 3, is 0.93 for ρAxAy
equal

to 0 and approaches DiCC of (B,A) as ρAxAy
tends toward 1. For

the same R2 matrix in Figure 3, DiCC of (B,A) varies slightly,
from 0.63 to 0.52, while GCC by contrast varies greatly from 0.93
to 0.52.

2.4. Long-Range Correlated Fluctuations in Protein.
We further compared the capability of the various CC parameters
using the example of Src SH2 domain in complex with a con-
formationally constrained mimetic of a phosphotyrosyl tetra-
peptide ligand pYEEI,18,19 and show that DiCC detects long-
range concerted motions that are underestimated by VCC. VCC
and DiCC were calculated between 106 Cα atoms from the
cumulative 80 000 conformations. In Figure 4a, VCC and DiCC
are plotted against the average distance between the Cα pairs.
The DiCC values are overall much greater than VCC values. No
Cα pairs, with average distances between them greater than 7.5 Å,
have a VCC value greater than 0.6. On the other hand, there are
more than 40 pairs of Cα pairs, shown as circles in Figure 4a,
separated by more than 7.5 Å and have DiCCs greater than 0.6.
One Cα pair, shown as a diamond in Figure 4a, with an average
distance equal to 24.8 Å has a DiCC value of 0.58.
The GCC values are also much greater than VCC values,

and the distribution is less disperse (Figures 4b and 5). The
GCC value is also greater in general than the DiCC value
(Figures 4c and 5). The increased value of GCC arises because
GCC is dominated by the largest element of R2 calculated in
a coordinate system where R2 is diagonal, as explained earlier
and in the Supporting Information, Note 1. Accordingly GCC,
without an effective scheme of combining one-dimensional
PCC values, does not characterize correlated behavior in a
manner suitable to find association between positional fluctua-
tions. GCC reflects some kind of correlation between random
vectors, but it is not clear given the tight distribution in Figures 4b
and the variation with respect to nonindependent vector com-
ponents (Figure 3), how useful it is to detect long-range con-
certed fluctuations in protein dynamics.

2.5. Convergence of Correlation Coefficient Values.We
investigated convergence behavior of different CCs of five pairs
of Cα atoms whose DiCC values fall within 0.9−1.0, 0.8−0.9,

Figure 2. Red dotted line represents GCC and RCC of (Br,Ar). As both
the values are very close to each other, only one line is drawn for clarity.
Blue solid and dotted lines represent DiCC of (B,A) and (Br,Ar). Dotted
blue line is hardly visible, as it overlaps with the solid blue line. Solid red
and green lines represent GCC and VCC of (B,A) respectively. VCC of
(B,A) depends onΔθ, the angle between B and A. The inset shows how
the RCC of (Br,Ar), when angle between (B andA) is π/2, changes as the
origin of the coordinate axis moves along x-axis. As the origin changes
the radial component of the vectors decreases, as does RCC.

Figure 3.Two random variables A and B are generated with R2(Ax,Bx) =
0.49, R2(Ay,Bx) = 0.49, and R2(Ax,By) = 0, and R2(Ay,By) = 0, while
varying ρAxAy

from 0 to 0.99. Solid blue and red lines represents DiCC
andGCC of (B,A), respectively. DiCC of (B,A) changes very slightly as
ρAxAy

varies from 0 to 0.99. GCC of (B, A) is 0.93 when ρAxAy
is equal to 0

and approaches DiCC of (B, A) as ρAxAy
tends toward 1.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300565f | J. Chem. Theory Comput. 2012, 8, 3009−30143011

cbp
Highlight



0.7−0.8, 0.6−0.7, and 0.5−0.6, respectively and have the highest
intrapair average distances among all Cα pairs with DiCC in their
respective ranges. The five pairs of Cα atoms are from residues
164 and 165, residues 153 and 154, residues 206 and 215,
residues 206 and 216, and residues 193 and 203, with average
intrapair distances 3.87 Å, 3.85 Å, 11.13 Å, 11.08 Å, and 24.71 Å,
respectively. We combined n ps from the beginning of the 40
trajectories and calculated VCC, GCC, and DiCC, and their
bootstrap standard deviation of the five Cα pairs from the
combined data, while varying n from 10 to 2000 with a step of 20.
Mean values of CCs calculated from the combine data stabilizes
with 40 × 400 ps of data (Figure 6). Standard deviations

calculated from 400 bootstrap sample change by less than 0.01
for all CCs during last 40 × 1 ns of data (Figure 6). Conver-
gence behavior of all CCs are similar, and they converge well with
40 × 1 ns of data.

3. DISCUSSION

A correlation coefficient should be able to characterize correla-
tion between displacement vectors due to concerted motion in a
protein regardless of the distance of separation. VCC depends on
the angle between the position vectors and hence underestimates
the correlation when vectors are not parallel. While RCC is
highly suitable for detecting radial motion in spherically
symmetric system, it depends on the position of origin of the
coordinates axis and is insensitive to azimuthal correlation. When
radial symmetry does not dominate the concerted motion, RCC
does not reflect the full correlation between positional vectors.
GCC is dominated by largest element of diagonalized R2 matrix
and not suitable to find association between vectors.
The CC best matching the criteria outlined is DiCC calculated

from distance covariance. DiCC was found here to capture the true
correlation between positional vectors based on agreement with R2,
is insensitive to the angle between the displacement vectors, and has
limited sensitivity to the dependence between the vector
components. Further DiCC reflects both linear and nonlinear
correlation.16 Using DiCC we observe long-distance concerted
motions in a protein that was not revealed by VCC. Detection of
such collective motion, which has mostly been elusive in analyses of
molecular dynamics simulation, can be insightful for understanding
allosteric function and other long-distance effects in proteins.

4. METHODS

4.1. Generating Correlated Gaussian.We determine {B}
and {A} with a specified covariance matrix C between Ax, Ay, Bx
by defining

= †C WW

=
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⎝
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where v1, v2, and v3 are three independent Gaussian random
variables with variance one and W† is the transpose of W. The
actual R2(Ax,Bx) andR

2(Ay,Bx) calculated from the generated {B}
and {A} were 0.48 to 0.50.

4.2. Molecular Dynamics of Src SH2. In the simulation
system, the natural phosphotyrosine (pY) residue was replaced
by one with the main-chain amide nitrogen, Cα and Cβ sub-
stituted by a cyclopropane moiety, which effectively constrains
the side-chain conformation of the residue to that of the protein-
bound state.18,19 The details of the MD simulations of the Src
SH2 complex have been reported previously.19 Briefly, five sets of
initial coordinates for the complex in explicit water were obtained
from the multiple copies of the complex in the crystallographic
asymmetric unit (PDB identifier 1IS0 and 1SPS). Eight simula-
tions were initiated from each conformation by varying the initial
velocities, yielding a total of 40 independent simulations. Each
simulation was equilibrated for 500 ps and extended for 2 ns of
production MD under constant temperature (298 K) and pres-
sure (1 atm). Coordinates were saved at 1 ps interval from the
production period.

Figure 4. (a) VCC (blue dots) and DiCC (red dots) between Cα atoms
of from 40× 2 ns long trajectory of Src SH2 domain in complex with the
ligand pYEEI (see text for details) plotted against average distance
between theCα atoms. Distance correlation reveals more than 40 pairs of
Cα atoms with average distances between them >7.5 Å and DiCC > 0.6
(circles). One pair of Cα atoms, showed in diamond, has an average
distance of 24.78 Å and DiCC of 0.58. DiCC reveals long distance
correlations, which are underestimated by VCC. (b) VCC (blue dots)
and GCC (orange dots) of Cα atoms plotted against average distances
between the Cα atoms. GCC does not reflect correlation suitable to
investigate concerted fluctuation of positional vectors of Cα atoms. (c)
DiCC and GCC of Cα atoms. Comparisons between VCC and DiCC
and VCC and GCC are given in Supporting Information, Figure S2.
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1 Generalized correlation coefficient and canonical correlation

Let {A} and{B} be twod-dimensional Gaussian random vector series with zero mean.The total

covariance matrix

C =







CAA CAB

CBA CBB






(1)

is a block matrix whereCAA and CBB are within-vector covariance matrices of{A} and {B}

respectively andCAB = C†
BA is between-vector covariance matrix.

The mutual information (MI) betweenA andB is1

MI(A,B) = H(A)+H(B)−H(A,B) (2)
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whereH is entropy and for a Gaussian distribution the entropy can bewritten as1

H(A) =
1
2

ln(2πe)d ‖ CAA ‖

H(B) =
1
2

ln(2πe)d ‖ CBB ‖

H(A,B) =
1
2

ln(2πe)2d ‖ C ‖ (3)

with ‖ . ‖ denoting the determinant. From Eq. (3) the MI betweenA andB is

MI(A,B) =−
1
2

ln

(

‖ C ‖

‖ CAA ‖‖ CBB ‖

)

(4)

The generalized correlation coefficient, GCC,2 of A andB is then

GCC(A,B) =

√

1− e
−2MI

d

=

√

1−

(

‖ C ‖

‖ CAA ‖‖ CBB ‖

)
1
d

(5)

One can write

‖ C ‖

‖ CAA ‖‖ CBB ‖

=
‖ CAA ‖‖ CBB −CBACAA

−1CAB ‖

‖ CAA ‖‖ CBB ‖

=‖ I −CBB
−1CBACAA

−1CAB ‖

= ∏
i
(1−λ 2

i ).

Hence GCC(A,B) =

√

√

√

√1−

(

∏
i
(1−λ 2

i )

)
1
d

, (6)

where theλ 2
i are eigenvalues ofCBB

−1CBACAA
−1CAB andλi are called canonical correlations3

betweenA andB. λ 2
i have values between zero and one. See Ref.4 for a short review on canonical

correlations. The valuesλ 2
i ’s are also the eigenvalues ofCAA

−1CABCBB
−1CBA. The eigenvectors
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of the former matrix are the basis vectors forB and of the later matrix the basis vectors forA. For

reference ifCBB, CAA andCAB are all diagonal thenCBB
−1CBACAA

−1CAB becomesR2 matrix

introduced in the main article. Let us assumeλ 2
i values are ordered,VA

i , VB
i are the corresponding

eigenvectors andλ 2
1 is the largest eigenvalue. ThenVA

1 andVB
1 are linear combinations ofA1, ...,Ad

andB1, ...,Bd such that the correlation between them is maximum among all possible combinations

of A1, ...,Ad and B1, ...,Bd and λ1 is the Pearson’s correlation coefficient (PCC) between them.

Similarly VA
2 andVB

2 are linear combinations ofA1, ...,Ad andB1, ...,Bd, which have a PCC of

zero withVA
1 andVB

1 respectively, with the second largest PCCλ2 between them. While canonical

correlations have a definite physical meaning, the value
√

1−
(

∏i(1−λ 2
i )
)

1
d is always dominated

by the largestλ 2 and cannot be considered a proper correlation coefficient (CC)between position

vectors. Consider the case whereλ 2
1 is close to 1 while otherλ 2’s are close to zero. Then the

product term will be close to zero and GCC will be close to 1. In such a case, althoughA andB

are highly correlated in one direction, they are not correlated at all in the otherd−1 directions, yet

the GCC value is still 1.

For example, if we take the series{A} and{B} generated from the model in Figure 1 with

∆θ = π/6 we have

CAA =







18.4 17.3

17.3 18.4






,CAB =







7.4 24.2

5.7 24.7






,

CBB =







5.0 12.6

12.6 48.5






. (7)
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And we haveλ 2
1 = 0.90 andλ 2

2 = 0.68, so that

VA
1 =







−0.64

0.77






,VA

2 =







−0.77

−0.64






,

VB
1 =







−0.91

0.41






,VB

2 =







0.68

−0.41






. (8)

VA
1 andVB

1 are almost perpendicular toA andB respectively. Soλ 2
1 is reflectingR2(Bθ ,Aθ ) which

is 1 in the model in Figure 1. SimilarlyVA
2 andVB

2 are almost parallel toA andB respectively

andλ 2
2 reflectsR2(Br,Ar) which is 0.69. And GCC of(B,A) becomes 0.91. GCC calculated by

methods developed by Kraskov et al.5 gave a value of 0.96 as plotted in Figure 1, which is not an

accurate reflection of the correlation in{A} and{B} or Br andAr.

2 Correlation between components of vector
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Figure S1: Pearson’s correlation coefficient between ˆx, ŷ and ẑ of the position vectors ofCα
atoms calculated from the molecular dynamics simulation ofSrc SH2 domain. About 40% of the
calculated PCC values are more than 0.3 and about 10% are more than 0.6.

We calculated Pearson’s correlation coefficient (PCC) between x̂, ŷ and ẑ components of the

position vectors ofCα atoms in the 80,000 conformations saved during the molecular dynamics

simulation of Src SH2 domain described in the main article. Figure S1 shows the probability
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density of these PCC values. About 40% of the calculated PCC values are more than 0.3 and about

10% are more than 0.6.

3 Comparison among correlation coefficients

Figure S2: (a) DiCC and‖VCC‖ of pairs ofCα atoms calculated from 40x2 ns long trajectory of
Src SH2 domain in complex with the ligand pYEEI. (b) GCC and‖VCC‖ of pairs ofCα atoms.
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