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Synopsis 

The ends of rather short double-helical DNA segments (approximately two persistence 
lengths) can be enzymatically joined to form closed circles. Such covalent closure into circles 
is a measure of the  likelihood of'the two ends of the DNA coming into close contact. There 
is a length of DNA for which loop formation is most likely to occur. We have determined the 
chain-length dependence of loop formation for stiff chains using computer-generated chains 
of cylinders. The  distribution from which the  values for the angles between cylinders were 
chosen relates the  chain parameters to a given chain persistence. Our results are compared 
with those of other theories, including a statistical wormlike chain model, and with the ex- 
perimental measurements for ring closure of DNA restriction fragments. 

The likelihood of the two ends of a segment of double-helical DNA 
meeting to form a loop depends on the length of the segment; segments less 
than a minimum size are unable to bend sufficiently due to the chain 
stiffness, while loops of much longer lengths rarely occur, since the large 
solution volume available to the segment ends greatly reduces the chances 
of the ends coming in contact. The balance of these two dependences re- 
sults in a maximum in the probability of loop formation as a function of 
DNA length. 

We have studied loop formation of DNA using a Monte Carlo procedure 
to generate, in free space, chains of cylinders with restricted bending. 
Finding a cylinder that contacted a second cylinder in the chain determined 
the occurrence of a loop, and the number of intervening cylinders was used 
to calculate the loop size. This work followed directly from our earlier 
study,l which examined excluded-volume effects on the chain dimensions 
of intermediate-sized DNA; the same methods for chain generation and 
for detection of cylinder overlap were used in this work. As discussed in 
Ref. 1, the excluded-volume effects predicted by the Monte Carlo analysis 
are very similar to those determined by a procedure2 based on the polymer 
theory of Yamakawa and Stockmayer? for wormlike chains. Loop for- 
mation in computer-generated DNA chains is also compared in this com- 
munication with theoretical predictionsti4 and with the experimental 
measurements of Shore e t  aL5 for the covalent ring closure of short DNA 
restriction fragments. 

The DNA model for the Monte Carlo procedure was a chain of cylinders 
linked with free rotation and with bend angles, 8, which follow a Gaussian 

* Present address: 1)epartment of Chemistry, Harvard University, Camhridge, Massa- 
chusetts 02 138. 



602 POST 

Fig. 1. Loop formed in a Monte Cnrlo-generated chain. Only part of the chain of 75 cyl- 
inders is shown. T h e  loop size is n = 5 cylinders, or contour length I, = 148.5 nm, and cor- 
responds to  the  size found most frequently (see Fig. 2).  T h e  chain was generated using l / p  
= 1 - (cos 8) = 0.5. The  cylinder dimensions are I = 29.7 nm and d = 4.4 nm. Using these 
values for L ,  (cos 8 )  and I in Eq. ( 2 )  give a wormlike persistence length a = 29.7 nm. 

distribution. Values from 0 to 27r for the rotation angle between two cyl- 
inders were randomly generated. The  values for H from 0 to  T were gen- 
erated according to  the distribution sinjfl) exp(-qH2), where g is related 
to the ratio of the cylinder length, 1, to  the persistence of the chain, p .  The 
chain flexibility depended on the degree of bending, which was set  by l lp  
and q ,  with the value chosen for l l p  being 0.5. A chain consisted of 75 
cylinders 29.7 nm long with an effective exclusion diameter,lO d ,  of 4.4 nm. 
These chain parameters were chosen so that  the average radius of gyration 
from the subset of chains for which no contacts occurred was approximately 
equal to  the radius of gyration measured by light scattering6 for EcoRl 
DNA in 0.2M Na+. Each cylinder of a given chain was tested for overlap 
with previously generated cylinders. Upon overlap, the length of the loop 
formed was set equal to the number of cylinders separating the overlapping 
cylinders plus one, assuming that  the average position of contact was 
midway along a cylinder. Figure 1 is an illustration of a loop of size n equal 
to five cylinders. The details of the chain generation and the method for 
testing for overlapping cylinders have been reported ear1ier.l 

The frequency of loop formation as a function of length was obtained 
from a set of 1200 chains. The probability of a loop of n cylinders was 
calculated from the frequency of occurrence divided by 1200 (75 - n + l), 
the factor 75 - n + 1 being needed to allow for the number of possible ways 
to form loops of size n. 
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Fig. 2. Probability of loop formation determined by ( 0 )  Monte Carlo-generated chains 
and by (solid line) Eq. (1) from the theory of Yamakawa and Stockmayer (Ref. 3) .  T h e  
number of cylinders forming a loop is n. L = n X 29.7 nm and a is given in Table I (the de- 
termination of a is described in the text). 

Examination of the occurrence of loop sizes plotted in Fig. 2 ( 0 )  finds 
that loops of 4 to 6 cylinders, corresponding to 119- and 178-nm lengths, 
form most frequently. There is a decline in cyclization with fewer cylinder 
lengths, while cyclization of longer lengths is a more slowly decreasing 
function. 

In order to compare the Monte Carlo loop-formation frequencies with 
the distribution derived from the statistical wormlike chain model,3 one 
must consider the size of the cylinders and recognize that two cylinders 
come in contact over a large volume. The segments of a finite volume chain 
do not meet a t  a point in space, as is the case for the statistical chain, but 
rather exclude a certain volume from each other. In view of this difference 
in the two methods, the volume element multiplying the ring-closure 
probability density is assigned the volume in which the overlap of two 
cylinders occurs, that is, a rigid-rod excluded volume.7 We use an ex- 
pression obtained by Isihara,' Eq. ( l b ) ,  for the excluded volume of short 
rods (for the Monte Carlo cylinder, l /d = 7). Thus, the following expression 
for the probability of ring closure occurring within a volume equal to the 
rigid-rod excluded volume is obtained from Eq. (62) of Ref. 3: 

3 

d" = T!?? 2 [? + (1 + $) (1 + 31 
where a is the persistence length of a wormlike chain and t equals L/2a,  
one-half the number of persistence lengths in contour length, L. Equation 
(1) is given in terms of real lengths, not reduced length; it includes the factor 
( 2 ~ ) - ~ ,  which does not appear in Eq. (62) of Ref. 3. 

The Monte Carlo probability for the formation of a loop of size n cylin- 
ders was compared to the probability given by Eq. (1) for the ring closure 
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T A H I X  1 
Corresponding Values of Persistence I.ength, a ,  for a Loop Formed from n Cylinders with 

Contour Length L 

n L (nm) a (nm) n L (nm) a (nm)  

2 
3 
4 
5 
6 
7 
8 
9 

10 

59 
89 

119 
149 
178 
208 
2.18 
267 
297 

6,'1.8 
52. j  
49.1 
47.7 
46.9 
46.3 
46.0 
45.8 
45.6 

11 
12 
1 3 
14 
15 
16 
17 
18 
19 
20 

327 
356 
386 
416 
445 
475 
505 
535 
564 
594 

45.5 
45.3 
45.3 
45.2 
45.2 
45.1 
45.1 
45.0 
45.0 
45.0 

of size I, = n X 1. We relate the parameter t of the theoretical ring-closure 
probability to the computer model by equating the expression for the 
end-to-end length of a wormlike chain8 to that for a chain with restricted 
bend angle? 

1 n -  ( cos ( l ) (2+n(cos ( l )  -2(CosO)n) 
(1  - cos 0 ) Z  

2 a ~  - 2ay [I - expk) ]  = 12 [ 
( 2 )  

With (cos (I) = (1 - l / p )  = 0.5, as determined by the distribution of H used 
in generating the chains, Eq. (2) can be solved iteratively for a to find the 
persistence length corresponding to the Monte-Carlo chains. The resulting 
values for a are shown in Table I. 

Like the good agreement reported earlier' in estimating excluded-volume 
effects, the Monte Carlo-determined probability of loop formation is con- 
sistent with the theoretical probability for ring closure of Yamakawa and 
Stockrnayer.:j The Monte Carlo frequencies are compared in Fig. 2 with 
the distribution function given by Eq. (1) (solid line). The two methods 
agree well, particularly considering the contrast between the discrete bends 
separating adjacent cylinders in the Monte Carlo chain and the contin- 
uously curving wormlike chain (perhaps a better model for DNA) used in 
the statistical theory. Both the Monte Carlo results and Eq. (1) have a 
maximum at Lla approximately equal to 3.0 and show a similar dependence 
on loop size. Overall, the Monte Carlo method appears to give a somewhat 
lower frequency for loop formation than is predicted by Eq. (1). The di- 
rection in which the Monte Carlo-predicted ring-closure probabilities differ 
from the wormlike-chain probability function is opposite to that found for 
the small differences in estimates of the effects of excluded volume on 
molecular dimensions; our Monte Carlo chains showed slightly larger ex- 
cluded-volume effects than were found using the Yamakawa and Stock- 
mayer theory. This inconsistency suggests that Eq. ( l b )  may not be an 
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accurate estimate for the differential volume element, which, in effect, 
“scales” the analytical probability to the Monte Carlo frequencies. 

Olson has also examined the probability of cyclization as a function of 
DNA chain length.4 Her study of flexibility, in which the DNA was mod- 
eled as a chain of virtual bonds linking the backbone phosphates, involved 
chains generated both with and without angular correlations. Since angular 
correlations were not taken into account in the work presented here, we 
compare Olson’s results for which angular correlations were not considered. 
We find a peak in the distribution of circle sizes occurs a t  256 base pairs. 
This gives Lla approximately equal to 1.6 (a  = 55 nm, rise per base pair = 
0.34 nm). Thus, this computer model, with nearly the same persistence 
length but a shorter step length than the cylinder-chain model, predicts 
a maximum at  a DNA length of about half that found by the cylinder model 
or by Eq. (1) for the wormlike chain. 

Shore et al.5 have measured the formation of covalently closed rings of 
DNA by the enzymatic joining of the ends of restriction fragments. They 
found the above analyses to be consistent with their experimental results 
(see Fig. 5 of Ref. 5), in ihat the frequency of ring closure from fragments 
between 1.6 and 30 persistence lengths did not vary by more than a factor 
of 10. The apparent maximum in the experimental measurements a t  4.5 
persistence lengths, however, is somewhat longer than seen for the Monte 
Carlo or wormlike model. This discrepancy may result because neither 
the computer analysis reported here nor the statistical theory? consider 
the dependences on the angular and rotational orientation ofthe segment 
ends, which must be a factor in the experimental measurements. 

T h e  author is particularly grateful to Prof. Bruno H. Zimm for many helpful discussions 
and comments on this work and for hinging  to the author’s attention the  excluded-volume 
expression for short chains. This  work was supported by Public Health Service Grant 
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