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Synopsis 

In an unfavorable solvent environment, DNA (and other polymers) undergo a conforma- 
tional transition to a collapsed form, accompanied by a dramatic reduction in the effective 
volume of the molecule. Solvent conditions leading to the collapse are the same as those that 
cause aggregation. We give here a thermodynamic description of the collapse and its relations 
to  aggregation (or precipitation). This is formulated in terms of the Flory-Huggins theory 
of the thermodynamics of polymer solutions. The results show that it is possible for three 
different states of DNA to be stable under different conditions: (1) the extended random 
coil, (2) the collapsed coil, and (3) a concentrated phase of aggregated random coils. The 
collapsed coil is predicted to he stable against aggregation only at  high dilutions, of the order 
of parts per million. For DNA the transition between the extended coil and the collapsed 
coil is predicted to he discontinuous, in the sense that intermediate states are not present, 
because of the relatively high stiffness of the chain. The transition should appear diffuse 
because of the small size of the single molecule in comparison to macroscopic systems. 

INTRODUCTION 

In an unfavorable solvent environment there is a tendency for the seg- 
ments of a polymer chain to associate with other polymer segments, re- 
ducing their interaction with the solvent. These associations can be either 
intramolecular, leading to a collapsed structure of a single polymer chain, 
or intermolecular, leading to an aggregated polymer phase. As a result of 
the intramolecular associations, the collapsed-chain radius of gyration, Rg , 
is substantially decreased relative to that of the extended chain in a good 
solvent or in an aggregated phase. Both internal condensation, a mono- 
molecular phenomenon, and external condensation, the association of many 
molecules, produce states of high segment density, conditions with a lower 
solution free energy due to the increased number of like-like contacts and 
the decreased number of the less favorable contacts between polymer and 
solvent. The higher segment density is achieved in the former case by 
reducing the solvent volume occupied by a single polymer molecule (smaller 
R g ) ,  and in the latter case by an increase in the number of molecules per 
volume of solution. It is to be expected that aggregation becomes more 
favorable at  higher polymer concentrations. 
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We use the term condensation to refer to the formation of a polymer-rich 
state of high segment density; therefore, condensation applies both to 
aggregation of many molecules and to compaction of a single molecule. The 
term collapse, on the other hand, is reserved for the single-molecule phe- 
nomenon of a large reduction in R,. 

In an earlier publication1 we described the collapse transition as derived 
from the free energy function, AG, for the mixing of an isolated polymer 
with solvent molecules. Following the Flory polymer solution theory, AG 
was expressed in terms of x, the parameter of interaction between the 
polymer and solvent, and a,  the linear expansion parameter ( a  = ( R g ) /  
(Rgo) , with Rgo the unperturbed radius of gyration in a theta-solvent). The 
equilibrium configuration of the polymer was determined by the minimi- 
zation of AG with respect to a for a given x. The collapse transition is the 
point a t  which the global minimum changes from a value of a close to one 
to a value of a much less than one. 

It is not, of course possible to measure the behavior of a single polymer 
molecule experimentally; therefore, one must consider the consequences 
of intermolecular associations on the free energy of the system, recognizing 
the possibility of an aggregated polymer state. We now extend the theory 
to describe a solution of many polymer molecules by including the effect 
of polymer concentration on the mixing process. How the collapse tran- 
sition relates to the equilibrium between macroscopic phases of the solution 
is the subject of this paper. A brief summary of the results has already 
appeared.2 Lifshitz et aL3 and Swislow et al.4 have independently arrived 
at  similar conclusions concerning the phase diagram of polymer solu- 
tions. 

The free energy of mixing of a polymer solution is found by adding two 
previously known expressions for AG-the single molecule mixing free 
energy1 and Flory’s free energy expression for the mixing of several mole- 
cules.5 Though the equations presented here are applicable to all polymer 
solutions, the numerical calculations refer to DNA solutions. The phase 
diagram for a DNA solution is calculated as a function of x and DNA con- 
centration from AG. In addition to the well-known coexistence curve that 
separates the concentrated phase from the dilute solution phase of ex- 
panded coils (Ref. 5, Chap. 12), the phase diagram contains boundaries 
defining the equilibrium domain of the collapsed state. Within the region 
of immiscibility, the phase concentrated in polymer molecules may be in 
equilibrium with either the dilute phase of extended coils or the dilute phase 
of collapsed coils. In going from a good to a poor solvent, two transitions 
are possible in a DNA solution: (1) at  higher DNA concentrations, the 
transition from a solution of extended random coils to an aggregated pre- 
cipitate, and (2) at lower DNA concentrations, the transition from the ex- 
tended coil to the collapsed coil in solution. A study to distinguish the 
collapse region of the phase diagram from the aggregation region using light 
scattering from high-molecular-weight DNA is reported in an accompa- 
nying paper.6 
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We also include a calculation of the effects of fluctuations on the value 
of ( a 2 ) ,  the average of equilibrium. Our earlier work1 was concerned with 
only the value of a corresponding to the minimum in AG of mixing for a 
single molecule. This work, however, focuses on the properties of a solution 
of polymer molecules; thus, the average configuration, which is experi- 
mentally observable, is of interest. In single molecules, fluctuations from 
the minimum of AG are sizeable; they affect the transition curve, making 
it noticeably diffuse. 

THE FREE-ENERGY FUNCTION 

The change in free energy on dissolution of a population of polymer 
molecules is obtained by adding two previously known expressions for 
mixing on a lattice. The polymer concentration dependence is introduced 
by adding the Flory-Huggins equation for a polymer mixture (Ref. 5. Chap. 
12) to the single-molecule mixing expression presented ear1ier.l Several 
accounts of the Flory-Huggins theory have a p ~ e a r e d . ~ ? ~ - ~  Flory's own 
comprehensive description5 is perhaps the most lucid and includes a 
thorough discussion of the limitations of the lattice model. A detailed 
explanation of Flory's theory will not be given here, except for some remarks 
on the approximations in the model that are relevant to this work. 

Hence, there are two parts to the AG of mixing. The first part, the 
Flory-Huggins equation, is the external free energy of mixing, which is 
concerned with the placement of solvent and of disoriented polymer mol- 
ecules in a common system. The external free energy includes the increase 
in entropy as a result of a larger available volume, plus that part of the heat 
of mixing due to the interaction of two polymer molecules. As before,l the 
free energy of interaction is expressed in terms of the unitless parameter 
x. The external free energy can be thought of as arising from the mixing 
of chains whose intermolecular collisions consist of a sum of independent 
single segment-segment contacts. The second part, the single molecule 
equation for dissolution, is the internal free energy of mixing. This AG 
of mixing involves the effects of dilution on an individual polymer molecule, 
that is, the change in the configurational statistics of a single chain in re- 
sponse to the solvent influence on the intramolecular potentials. 

The total mixing free energy for the polymer and solvent mixture is 

AG = AGeXt + n2AGint 

AG 
- = nl  In u 1 +  n2 In u 2  + xnlu2 
kt 

where nl  is the number of solvent molecules and u1 is the solvent volume 
fraction. The quantities n2 and uz are the same for the polymer. N is the 
ratio of the molecular volume of the polymer to the solvent, so that N = 
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V,lV,. The expansion parameter, a, is the ratio of R, to the unperturbed 
radius of gyration, R,, (i.e., the radius of gyration when the net excluded- 
volume effect is zero). The quantities BP, B3, and w, as defined previously,l 
are given below: 

with (hi)  the unperturbed end-to-end length and q the lattice coordination 
number. The first three terms in Eq. (1)  represent the external free energy. 
The increase in entropy due to the external arrangement of whole polymer 
molecules and solvent molecules is expressed in the familiar form of the 
logarithm of a concentration. The third quantity is a function of the in- 
teraction parameter, x, and contains the free energy due to the formation 
of segment-solvent contacts at the expense of solvent-solvent contacts and 
intermolecular segment-segment contacts. These three terms make up 
the expression that Flory derived (Ref. 5, p. 509) for the free energy of 
mixing as a function of polymer concentration. The square brackets of 
Eq. (1) contain the terms for the internal free energy of mixing per polymer 
chain given by Eq. (5) of Ref. 1. As discussed in detail in Ref. 1, they ac- 
count for the change in free energy associated with the mixing of segments 
within the domain of one polymer. The contributions from the heat and 
hard-core repulsion are given in a series expansion of the segment volume 
fraction within the polymer domain, i.e., w/a3. The elastic nature of the 
chain is expressed by the last terms, which are functions of only a. 

The Interaction Parameter x 
The difference between the interaction free energies of like and unlike 

species is expressed in terms of the interaction parameter x. In Eq. (l), 
x is used for both the external and internal mixing processes. As such, the 
contact between segments as a result of a collision between two polymer 
molecules is assumed to be equivalent in free energy to the binary contacts 
between segments within one molecule. This is reasonable, since a contact 
between segments belonging to two different chains should be similar to 
a contact between segments from one chain. The molecular details and 
the form of the potential of interaction are not specified. 

A brief discussion of the meaning of x is needed to clarify the link be- 
tween x and experimental parameters. The complete theoretical basis of 
x as it was in the early developments of the lattice model is given by Flory 
(Ref. 5, Chap 12). In short, x was assumed to be proportional to the dif- 
ference in the energy of contacts between unlike and like species. This was 
written mathematically in terms of hii, the energy associated with a contact 
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between species i and species j ,  as 

x a hi2 - ' /2(h11 + h 2 2 )  

with 1 and 2 referring to solvent and segment, respectively. An increase 
in hi, is equivalent to increasing the repulsive energy or decreasing the at- 
tractive energy between i and j .  Following the first developments of the 
Flory theory, it was discovered that experimentally determined values of 
x show a dependence on concentration, temperature, and molecular weight. 
Therefore, a more appropriate formulation for the interaction parameter 
is a free-energy function with an entropic component as well as an enthalpic 
one.g-ll Nonetheless, the heat terms of Eq. (2) are still associated with 
X .  

Let us then consider hi2 to be the solvent-segment free energy of inter- 
action. An actual solvent of a DNA solution is usually composed of many 
components that together make up the environment surrounding the DNA 
segments. Miscibility is determined by the segment interaction with the 
environment as a whole; thus, h 1 2  represents here the overall free energy 
of contact between a segment and all the solvent components. 

Clearly, x changes whenever there is a change in any one of the terms h12, 

hll, or h22.  Examination of Eq. (2) finds that x increases (DNA is less 
soluble) either when h12 increases or when hll or h 2 2  decreases. For ex- 
ample, neutralization of the phosphate charges with spermidine reduces 
the repulsion between DNA segments, decreasing the segment-segment 
interaction parameter, h22.  An increase in the segment-solvent interaction 
parameter, h12, can be produced by the addition of nonsolvents such as 
poly(ethy1ene oxide) (PEO) or ethanol, since such a change in the envi- 
ronment makes the segment interaction with the solvent less favorable. 
Classification of the types of interactions based on the molecular details 
of the interaction is not important here; neither the form of the potential 
nor the specific mechanism of DNA condensation needs to be addressed. 
A change in any one of the hij terms in Eq. (2) alters x. The theory is ap- 
plicable to all DNA solutions, since x is an overall measure of the favora- 
bility of the intereaction of the DNA with the solvent relative to the other 
interactions. 

Hence, x is best considered to be an empirical parameter that becomes 
'/2 a t  the theta point. In synthetic polymer solutions, experiments have 
shown that x varies somewhat with the c o n c e n t r a t i ~ n ~ , ~ - ~ ~ ;  but since there 
are no data on this matter with DNA solutions, we must assume x to be 
constant. Although x appears only in the term of the first power of the 
polymer concentration in AGeXt of Eq. (l), x appears in both the second 
and third terms of the expansion in the segment volume fraction AGint. 
Since it is essential for the prediction of the collapsed state to keep the third 
term in the series, we retain x in this term, as discussed in Ref. 1. 

We note that the theory presented here is limited; however, the expres- 
sions are not intended to be accurate but simply to describe semiquanti- 
tatively the behavior of DNA solutions. 
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THE PHASE DIAGRAM 

The attractive potential between segments leads to a phase separation 
when x is greater than l/2. Whether the association of segments occurs 
within a single molecule, resulting in collapsed structures, or by interaction 
of several molecules, resulting in aggregation, depends on the polymer 
concentration. The AG of mixing from Eq. (I) was used to determine the 
phase equilibrium of DNA solutions in the following way. 

and 
p2, can be obtained by differentiating AG with respect to nl and n2, re- 
spectively: 

The chemical potentials of the two components of the mixture, 

where ’ 7  and pi are the chemical potentials of the pure phases. 
The curves for PI and ~2 versus u2 are single-valued functions for x < l/2; 

thus, only one phase occurs. For larger values of x, the curves are multi- 
ple-valued; thus coexisting phases are possible. The concentration of 
polymer in the two phases in equilibrium is then determined by equating 
the polymer and the solvent chemical potentials in the polymer-dilute phase 
to their respective potentials in the polymer-rich phase. Representing the 
concentrated polymer phase by a prime and the dilute phase by the absence 
of a superscript, we write 

Pl = Pl 

P2 = ’2 

Thus, for a x greater than l/2, the phase compositions are determined by 
the two values of the polymer volume fraction, u2 and u;, which simulta- 
neously satisfy conditions (5) and (6). The coexistence curve in the phase 
diagram of x plotted against composition was determined by using a series 
of Newton-Raphson iterations to solve for up and u;. 

Three X-versus-composition phase diagrams are plotted in Fig. 1. Each 
curve represents a different DNA molecular weight, with the appropriate 
(h i )  and N values given in the figure caption. The concentration units 
along the abscissa are pg/mL, converted from the less familiar units of u2, 

mL/mL, by the density of DNA, 1.8 g/mL.12 For each molecular weight, 
the boundaries separate three regions-extended random coils in solution, 
collapsed DNA in dilute solution, and concentrated precipitate (“aggre- 
gated”). These regions are labeled for the smallest molecular weight only. 
The horizontal line on the dilute solution side marks the value xcol, the value 
of x for which the free energies of the extended and collapsed coils are equal. 
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log [ DNA] (pglrnl) 

Fig. 1. Phase diagram of x versus composition for DNA of different molecular weights. 
cm and N = 3.1 X lo4; for M ,  = 37 X 106, ( h i )  'I2 = 

and N = 2500. The 
For M ,  = 124 X 106, (hfl)1/2 = 2.5 X 
1.3 X 
two-phase region is marked with horizontal lines. 

cm and N = 9300; and for M,  = 10 X lo6, (h i )  1/2 = 6.2 X 

As discussed below in detail, this value of x marks the center of a diffuse 
transition from the extended to the collapsed state, the relative populations 
in the two minima of the free-energy function changing as x is changed. 
The procedure for determining xcol was reported in Ref. 1. 

The shaded area marks the two-phase region, with the compositions of 
the coexisting phases being the values that lie on the curve (as just dis- 
cussed). The maximum in the coexistence curve indicates the solution 
composition and x value critical for phase separation of the two-component 
system. This x value is designated by xsep to distinguish it from the crit- 
ical-point value discussed in Ref. 1. 

For values of x less than xsep, u2 is a single-valued function of p1 and p2, 
and the solution is a homogeneous mixture of solvent and extended, ran- 
domly coiled DNA at all concentrations. For solvent conditions in which 
like contacts are favored, x is greater than xsep; u2 is a multiple-valued 
function of p1 and 11.2, and there is a region of immiscibility. A t  high DNA 
concentration, the phase separation results in aggregation. On the other 
hand, at low DNA concentration, as x is increased there is first a transition 
from the extended polymer to the densely packed monomolecular collapsed 
state, with progression through the collapse region eventually leading again 
to aggregation. With decreasing DNA concentration, the collapse region 
widens in the vertical direction, indicating a larger range in x within which 
the DNA is collapsed before aggregation appears. Two equilibria are 
possible when the mixture is heterogeneous: (1) the concentrated DNA 
phase may coexist with a dilute solution of extended coils when x is between 
Xsep and xcol, and (2) the concentrated DNA phase may coexist with a dilute 
solution of collapsed DNA for x greater than xcol. 
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The maximum of the coexistence curve is found by the usual procedure 
of setting both the first and second derivatives with respect to u g  of either 
pr or pg equal to zero and solving for Xsep and ~ 2 , ~ ~ ~  The results are given 
by Flory (Ref. 5, Chap. 13) and are as follows: 

(7) 

Xsep = (1 + (8) 

It is seen that the position of the maximum in the X-composition diagram 
is a function of N only. The effects of N on the phase diagram will be 
discussed more fully in the following section. 

xsep and xcol are functions of molecular weight. A t  infinite molecular 
weight, xsep = xcol = I/g. For finite M,, both are slightly greater than I/g7 

with xcol increasing somewhat more rapidly with a decrease in M,  than does 
xseP Poorer solvent conditions (larger x) are required for phase separation 
of lower-molecular-weight polymers. 

At smaller values of M ,  the collapse region extends to higher polymer 
concentrations. The phase diagram in Fig. 1 shows that the DNA con- 
centration at  which the horizontal line for xc0l intersects the coexistence 
curve, outlining the region of immiscibility, is approximately 2-3 pg/mL 
for M,. of 10 X lo6, and only 0.6 pg/mL for M,  of 37 X lo6. The collapse 
region also spans a broader x range for a lower molecular weight. The 
collapse of smaller polymers should therefore occur over a larger range in 
solvent conditions (such as collapsing-reagent concentration or tempera- 
ture) before the polymer precipitates. 

Examination of Eq. (3) for the case of pure polymer ( u g  = 1) shows that 
this expression for p2 - p: cannot be exact. For the pure polymer state, 
p2 should equal pi; however, when x is set equal to zero and u2 and 01 are 
set equal to one, the terms in the square brackets of Eq. (3) are nonzero. 
The magnitudes of the two terms in w are negligible, but the term ( - N )  is 
not. N ( x  - 1) comes from integration of the single-molecule AG function 
as originally formulated by Flory (Ref. 5, Chaps. 12 and 14). This problem 
is left unresolved, since the N(x - 1) term has no concentration dependence 
and does not alter the solution equilibrium between two phases. 

~ 2 , s e p  = 1(1 + v'X) 

Effects of N on the Phase Diagram 

Some comments about the parameter N are in order. As the ratio of the 
molecular volumes of polymer ( V p )  and solvent ( V1)7 N can change sig- 
nificantly with VI. In the lattice model, V1 equals V,, the segment volume. 
The proper choice for V, is sometimes not apparent. It is possible in some 
synthetic polymer solutions to apply the lattice model without complication 
and assign values for V, equal to the molecular volume of the solvent. In 
these polymer-solvent systems, the monomer unit and the solvent are 
structurally similar, with the molecular volume of the solvent equivalent 
to 1 or to 3 monomer units.13 The connection between the experimental 
system and the lattice model is obvious and allows a reasonable choice for 
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V,. Still, in some such systems where the monomer unit and solvent 
molecules are similar, discrepancies between theory and experiment indi- 
cate that a better agreement could be obtained if a segment size larger than 
the monomer unit were chosen.14 In the case of DNA, it is uncertain what 
structural criterion should be used to define a segment. Without an em- 
pirical determination for N, its most appropriate value remains un- 
known. 

The phase diagrams in Fig. 1 were calculated using V, equivalent to six 
base pairs; hence, the segment unit is approximately spherical to make at  
least some tie of DNA to the lattice model. The V, reported in Ref. 1 is 
different, since the work reported there was completed before this tie was 
considered. 

The differences in the phase diagram that result from a change in N are 
illustrated in Fig. 2, with V, corresponding to one base pair for N = 5.6 X 
lo4 and to six base pairs for N = 9.3 X lo3, with M,. and (h i )  held constant. 
The choice of N does not alter the overall picture of the phase behavior, 
only the details of the shape. The main effect of a different N is practically 
just a change in the x scale, for which there is no consequence without an 
empirical determination of x for DNA. 

THE COLLAPSE TRANSITION IS A DIFFUSE 
TRANSITION 

The two minima in AG representing the expanded and collapsed forms 
are within a few multiples of kT of each other over an appreciable range 
of x for molecules of finite size. We assume that the system distributes 
itself between the two minima according to a Boltzmann distribution. 
(This problem has apparently not been addressed in previous theoretical 
p a p e r ~ l , ~ J ~  concerning the single-molecule phase transition; see also other 
references given in Ref. 1.) 

Fig. 2. Effect of N ,  the ratio of the molecular volume of the polymer to the segment, on the 
x versus composition phase diagram. Both coexistence curves were calculated for DNA with 
M ,  = 37 X lo6 and = 1.3 X cm. 
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Since most experimental methods measure some average property of the 
solution, a procedure for averaging various functions of a is needed. Light 
scattering, for example, depends on Ri of the scattering particle; thus, the 
quantity ( a2)  is of importance. The average is calculated as a function 
of x, using the Boltzmann distribution, according to the following equa- 
tion: 

AG is the single-molecule free energy of mixing in Eq. (5) of Ref. 1 [also the 
internal free energy in Eq. (l)]. In a similar fashion, ( a )  and ( l / a )  can 
be easily determined. The effects of averaging are illustrated for a DNA 
solution in Fig. 3, with ( a2)1’2 plotted against x. The results were obtained 
by numercial integration of Eq. (9). For purposes of comparison the 
nonaveraged values of amin, corresponding to the global minimum in AG, 
are also plotted. The value ( a2)1/2 is larger than a,;, when a is close to 
one, because of a broad minimum in AG for the expanded state. In contrast 
to the sharp discontinuity in a,in at xcol (indicated by the dashed line), the 
averaging process produces a smooth transition to the collapsed state, with 
a broader range in x over which ( a2)  1/2 decreases from a value greater than 
one to approximately 0.1. In addition, the effect of averaging on the col- 
lapse transition is more apparent a t  smaller molecular weight. 

I 

3 5 7 

X 
Fig. 3. Value of a, the linear expansion parameter, as a function of x. Values of am,” cor- 

respond to the global minimum in AG,,,. Average values, (a?)*/2,  are calculated assuming 
a Boltzmann distribution. The two left-hand curves were calculated with M ,  = 37 X lo6, 
(hg)II2 = 1.3 X cm, N 
= 500. 

cm, N = 9300; the others with M ,  = 2 X lo6, ( h i )  l/* = 2.4 X 
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An accurate numerical prediction for the radius of gyration of collapsed 
DNA cannot be made from the theoretically determined ( a )  for three 
reasons. First, the Flory model assumes a Gaussian-chain polymer, 
whereas the best model for DNA is a wormlike chain. Moreover, the 
densely packed collapsed state of DNA is almost certain to possess some 
degree of helical organization,l6-l8 which is not considered in the theory. 
Second, since a is the ratio of the radius of gyration to its unperturbed value 
in a theta solvent, it is necessary to know Rg,,. Rgo can be calculated from 
the persistence length; however, the persistence length for DNA is uncer- 
tain, since measured values vary ~ i d e l y . l g - ~ ~  Third, the value of x is un- 
known. Nevertheless, the rapid change of a on collapse should be ob- 
servable. 

DISCUSSION 

Addition of the single-molecule AG , determining the equilibrium con- 
figuration of an isolated polymer molecule as a result of mixing with solvent 
molecules, to the Flory-Huggins AG, containing the polymer concentration 
dependence of mixing, leads to a X-versus-composition diagram that 
discriminates three states: extended random coils in concentrated solution, 
extended random coils in dilute solution, and collapsed coils in dilute so- 
lution. The first state can be in equilibrium as a precipitate in contact with 
either of the other two. The collapse of DNA does not occur in the con- 
centrated phase. It is assumed that individual chains remain close to their 
unperturbed dimensions in the concentrated polymer phase23 (also Ref. 
8, p. 137), since the preference for segment-segment contacts can be sat- 
isfied by joining with other chains, thus avoiding the decrease in entropy 
imposed by the collapsed state. 

Effect of Collapse on p~ 

No terms appear in p1 [Eq. (4)] that correspond to the internal collapse 
terms in p2 [Eq. (3)]. Although compaction of the polymer reduces p2 in 
dilute solution when x is greater than l/2, the chemical potential of the 
solvent is practically unaffected by collapse of the polymer. This situation 
does not contradict the Gibbs-Duhem equation, which is a relationship 
between the derivatives of the chemical potentials with respect to polymer 
concentration (i.e., the slope of the chemical potential plotted as a function 
of ug).  AGint has no concentration dependence; therefore, the internal 
terms change the magnitude of p 2  in the dilute region but do not alter the 
slope of the curve of p2. (In principle, concentration effects are present 
in AGint arising from interactions between different molecules, but these 
are not important a t  the concentrations of concern here.) 
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Role of A Gint in the Mixing Free Energy 

We wish to examine the extent to which AGint and AGeXt determine the 
phase equilibrium by considering their relative contributions to p~g for the 
dilute and concentrated phases. Only the terms containing u g  and cy in Eq. 
(3) are of concern. Within the collapse region of the dilute phase, a is much 
smaller than one, and the terms from AGint are large. Furthermore, for 
small v2, the only term from AGeXt that is significant to pg is the logarithm. 
As expected, then, in dilute solution the interaction between segments 
occurs internally (intramolecularly), and there is practically no external 
interaction between two polymer molecules. For the expanded polymer 
cy is close to one, and the terms from AGint do not differ substantially from 
zero. As u g  increases, the terms from AGext, and thus the external inter- 
actions, become dominant. In conclusion, it is found that AGint affects 
only the composition of the dilute polymer phase, whereas in the DNA-rich 
phase the theory is essentially that known as the Flory-Huggins theory. We 
note that the Flory-Huggins formula fits experimental data for polymer 
solutions surprisingly well and is generally accepted as an empirically useful 
f ~ r m u l a , ~  in spite of the inaccuracies of the lattice model from which it was 
derived. 

Relation to Previous Work 

By now there ia a considerable literature on the theory of the collapse 
transition, most of which is summarized in the excellent review by Lifshitz 
et  al.3 (This is perhaps the proper place to point out how much of the 
subsequent work was anticipated in the remarkable paper by Ptitsyn et 
al.,I5 a paper of which we were unaware at  the time of our previous publi- 
cation.’) We limit ourselves here to a few points that do not seem to have 
been widely studied, or about which there seems to have been some con- 
fusion. 

Polymer Concentration 

Although most previous theoretical work has dealt with single polymer 
molecules, these studies have limited applicability to real systems composed 
of many molecules. Our results suggest that the single-molecule collapsed 
state is thermodynamically stable against aggregation only at high dilution, 
at least with the simple polymers of the type we have considered. (Pre- 
sumably a polymer could be constructed with a specific structure that would 
prevent aggregation, even after collapse; globular proteins must be such 
structures.) Experimental results of Swislow et al.4 on polystyrene and 
our own work on DNA in an accompanying paper6 confirm this prediction. 
The experimental phase diagram of Swislow et al. is, in fact, remarkably 
like our predicted one. 

Many of the experimentally observed “collapsed forms” of DNA were 
found to be aggregates of several m o l e ~ u l e s ~ 6 J ~ ~ ~ ~ ~ ~ 5  (for example, the 
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striking globule photographed by Lerman17). The question arises, Were 
these forms thermodynamically unstable and trapped in the process of 
separating into a macroscopic precipitate? 

Chain S t i f fness  

The effect of chain stiffness on the nature of the transition does not al- 
ways seem to have been appreciated, even though it is implicit in the work 
of Ptitsyn et al.15 and in that of de Gennes,26 and was discussed in our 
previous paper1 and in the review by Lifshitz et al.3 With chains of more 
than a certain degree of stiffness, that is, chains whose parameter y is less 
than 0.0227,1,15 there is a transition between two distinct “states” repre- 
senting different minima of the free energy. With chains of less than this 
degree of stiffness there is only a gradual change of the position of a single 
minimum of the free-energy function as the solvent power or temperature 
is varied. DNA apparently belongs to the former class and polystyrene, 
a rather flexible chain, to the latter. 

Sanchez27 studied the theory of the transition at a particular value of y 
equal to 0.1005 = 19/189 [Ref. 27, Eqs. (51b), (61) and Fig. 21. One would 
expect a rather gradual transition at such a high value of y, and this is what 
he found. 

Baumgartner28 and Webman et al.29 have carried out computer simu- 
lations of chains of beads with Lennard-Jones interactions and with various 
degrees of flexibility. Baumgartner’s chains were completely free-jointed, 
so their degree of flexibility was high, corresponding toy  = 0.5 or greater; 
he found a gradual transition, as we would expect. Webman et al. varied 
the flexibility but still found only a gradual transition. However, the value 
of y that best fits their results on their least flexible chain is 0.045, which 
is still greater than the critical value. On the other hand, Ptitsyn et al., 
simulating chains on a lattice, found a situation where two disconnected 
regions of configuration space, corresponding to collapsed and expanded 
chains, respectively, were both substantially occupied in the condensation 
region. 

Order o f  Phase Transit ion 

Lifshitz et al.3 classify collapse transitions into two types. If there are 
two minima in the free-energy function at  the transition region, corre- 
sponding to stable and metastable states (y <0.0227), they call the collapse 
transition “first-order.” If there is only one minimum in the free energy, 
and hence no metastable state y >0.0227), they call the transition “sec- 
ond-order.” The term “second-order transition” has been used somewhat 
differently in the thermodynamic literature; Ehrenfest30 originally defined 
a first-order transition as one in which an extensive variable, such as the 
volume, had a discontinuity as a function of an intensive variable, such as 
pressure, while in a second-order transition a first derivative, such as the 
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compressibility, had the discontinuity (see also Mayer and Streeter3I). 
These definitions are not easy to apply to the collapse transition because 
the finite size of the molecules causes the transitions to be diffuse, but the 
so-called first-order collapse transition is clearly analogous to a first-order 
macroscopic phase transition of a gas to a liquid at  low temperature. On 
the other hand, the “second-order” collapse transition corresponds to the 
continuous passage from gas to liquid at  a temperature above the critical 
point, a process that is not usually considered to be a phase “transition” 
in the Ehrenfest sense at  all. Obviously there is a problem of nomenclature 
here that is outside the scope of the present paper to resolve. The impor- 
tant thing from the physical point of view is that the two types of collapse 
processes proceed by different mechanisms. 

We thank Professor John C. Wheeler for many discussions about the theory of phase 
transitions. This work was supported by a Public Health Service grant, GM-11916, and C.B.P. 
was the recipient of an IBM Graduate Fellowship. 

1. 
2. 
3. 

4. 
5. 

N.Y. 
6. 
7. 

York. 
8. 
9. 

10. 
11. 

713. 

References 

Post, C. B. & Zimm, B. H. (1979) Biopolymers 18, 1487--1501. 
Post, C. B. & Zimm, B. H. (1980) Riophys. J .  32,448-450. 
Lifshitz, I. M., Grosberg, A. Yu. & Khokhlov, A. R. (1978) Reu. Mod. Phys. 50,683- 

Swislow, G., Sun, S. T., Nishio, I. & Tanaka, T .  (1980) Phys. Reu. Lett .  44,796-798. 
Flory, P. J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, 

Post, C. B. & Zimm, B. H. (1982) Biopolymers, 21,2139-2160. 
Yamakawa, H. (1971) Modern Theory of Polymer Solutions, Harper & Row, New 

Morawetz, H. (1975) Macromolecules in Solution, 2nd ed., John Wiley, New York. 
Casassa, E. F. (1976) J .  Polym. Sci.,  S y m p .  54,53-83. 
Flory, P. J. (1970) Discuss. Faraday Soc. 49,7-29. 
Koningsveld, R., Stockmayer, W. H., Kennedy, J .  W. & Kleintjens, L. A. (1974) Mac- 

romolecules 7.73-79. 
12. 
13. 
14. 
15. 

3517. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 

Cohen, G. & Eisenberg, H. (1968) Riopolymers 6,1077-1100. 
Shultz, A. R. & Flory, P. J. (1952) J.  Am. Chem. Soc. 74,4760-4766. 
Zimm, B. H. (1946) J .  Chem. Phys. 14,164-179. 
Ptitsyn, 0. B., Kron, A. K. & Eizner, Y. Y. (1968) J .  Polym. Sci., Pt. C 16, 3509- 

Shapiro, J. T., Leng, M. & Felsenfeld, G. (1969) Biochemistry 8,3219-3232. 
Lerman, L. S. (1973) Cold Spring Harbor Symp. Quant. B id .  38,59-73. 
Weiskopf, M. & Li, H. J. (1977) Riopolymers 16,669-684. 
Harrington, R. E. (1978) Biopolymers 17,919-936. 
Borochov, N., Eisenberg, H. & Kam, Z. (1981) Riopolymers 20,231-235. 
Hagerman, P.  J. (1981) Riopolymers 20,1503-1535. 
Rizzo, V. & Schellman, J. A. (1981) Hiopolymers 20,2143-2163. 
Flory, P.  J. (1949) J .  C h ~ m .  Phys. 17,303-310. 
Dore, E., Frontali, C. & Gratton, E. (1972) Riopolymers 11,443-459. 
Allison, S .  A., Herr, J. C. & Schurr, J. M. (1981) Riopolymers 20,469-488. 
de Gennes, P. G. (1975) J .  Phys. Lett. (Paris) 36,55-57. 



THEORY OF DNA CONDENSATION 2137 

27. Sanchez, I. C. (1979) Macromolecules 12,980-988. 
28. Baumgartner, A. (1980) J .  Chem. Phys. 72,871-879. 
29. Webman, I., Lebowitz, J. L. and Kalos, M. H. (1981) Macromolecules 14, 1495- 

30. Ehrenfest, P. (1933) Leiden Comm. Suppl. 756. 
31. Mayer, J. E. & Streeter, S. F. (1939) J .  Chem. Phys. 7,1019-1025. 

1501. 

Received January 12,1982 
Accepted April 23,1982 




