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Synopsis 

We report a theoretical description of the collapse of a single chain molecule, such as DNA, 
from a voluminous random coil to a condensed state. With the polymer lattice theory de- 
veloped by Flory as a starting point, the configurational free energy of a single polymer mol- 
ecule in solution is expressed as a virial expansion in the polymer segment volume fraction. 
We have extended the series by one term beyond Flory’s analysis and have evaluated the third 
virial coefficient. Whenever the potential of interaction between two chain segments is at- 
tractive, the addition of this new term causes a new minimum to appear in the free energy. 
The new minimum represents a polymer configuration in which the chain occupies a very small 
solution volume; we identify this minimum with the collapsed state. There is a critical point 
for the transition to the collapsed state; above a certain value of the rms end-to-end distance, 
the change in the polymer solution volume is a sudden one, whereas below this value the 
transition is gradual. An example of the results of the free energy calculation using parameters 
from T2 DNA is presented. DNA should show a sudden collapse, but synthetic polymers 
such as polystyrene should show a gradual collapse. 

INTRODUCTION 

The condensation of DNA from an extended random coil of low polymer 
segment density to a smaller, more tightly compacted particle has been 
described by several workers. Lermanl observed that DNA a t  very low 
dilutions, -5 pg/ml, when sedimented through a solution with NaCl and 
polyoxyethylene (PEO), moved with an anomalously high sedimentation 
velocity. Further experiments, including CD,293 x-ray ~cat ter ing,~ flow 
birefringence, and fluorescence micro~copy,~ indicate that under these 
conditions, DNA undergoes a definite configurational change, consistent 
with an altered tertiary structure of the DNA polymer. Other studies in 
which DNA condensation was thought to occur have been made using a 
variety of solution conditions. Electron microscopy studies by have 
shown that DNA exposed to high concentrations of ethanol collapses into 
small particles, and that the higher the ethanol concentration the greater 
the degree of collapse. Additional condensing solvent systems include 
polyamines,8 acid?JO polypeptides,l’ and other synthetic po1ymers.l 

In this paper we report on a theoretical picture that accounts for con- 
densations of this type in any chain molecule. Our description is an ex- 
tension of the Flory-Huggins polymer solution theory in which a lattice 
model is used to obtain an expression for the free energy of mixing a polymer 
and a solvent. Although the lattice model is highly simplified, Flory’s 
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calculation is found to be adequate in that agreement with experimental 
data for the osmotic pressure, light scattering, and vapor pressure of 
polymer solutions at  high concentration is good (Ref. 12, Chap. 12; Ref. 13, 
Chap. 3). Therefore, Flory’s model is an attractive one to use to describe 
the condensation behavior of DNA, since in the collapsed state the local 
DNA concentration is very high. 

We have added an expression for the third virial coefficient to Flory’s 
free energy equation and find that the lattice model does indeed show the 
phase transition as an abrupt change in the solution volume occupied by 
a polymer molecule. Furthermore, we show that a critical point exists for 
this phase transition from the extended polymer configuration to the col- 
lapsed form. A polymer whose potential of interaction with the solvent 
and whose flexibility have values beyond those at  the critical point does 
not undergo a sharp change in solution volume but instead expands and 
contracts in a continuous fashion. 

Other theoretical approaches have been reported which address polymer 
configurations for solutions of overall high concentration and which con- 
sider the expansion of polymers in good  solvent^.^^-^^ The possibility of 
a collapsed phase has been recognized for y e a r ~ . ~ J ~ - ~ ~  A statistical me- 
chanical description of a large polymer in solution with a second, smaller 
polymer has been recently reported by Naghizadeh and M a ~ s i h , ~ ~  who 
found a singularity in the free energy at a critical concentration of the 
smaller polymer. 

While this manuscript was in progress, we received a copy of a manuscript 
that Frisch and F e ~ c i y a n ~ ~  have submitted for publication. Their treat- 
ment, also based on the Flory lattice model, appears to differ from ours in 
a number of ways but is fundamentally similar in its approach. 

PROCEDURE 

Using a lattice model, Flory some time ago derived an expression for the 
free energy of mixing for a single polymer molecule with solvent (Ref. 12, 
Chaps. 12 and 14). The free energy includes the energy from interaction 
between solvent molecules and polymer segments and is formulated in 
terms of a dimensionless parameter, x. The quantity x is the change in 
free energy on formation of unlike first-neighbor contacts with the loss of 
solvent-solvent and segment-segment contacts, divided by kT. The free 
energy depends on the segment density and is therefore a function of r, the 
distance of a segment from the center of mass of the polymer. Flory’s free 
energy equation is 

+ 3(a2 - 1) - In a3 (1) 
2 

where rzI(r) is the number of solvent molecules, and u l ( r )  and u2(r) are 
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volume fractions of solvent and polymer, respectively, in a spherical shell 
a t  distance r .  The parameter x, mentioned above, is more rigorously de- 
fined in the Appendix, Eq. (A12), and a is the well-known linear expansion 
factor, “the factor by which the linear dimensions of the chain molecule 
are increased owing to intramolecular interactions” (Ref. 12, p. 528). The 
integrand of Eq. (1) is the contribution to the free energy due to the mixing 
of segments with solvent and was derived assuming the density is unifornz 
in each spherical shell of radius r .  This point is discussed in more detail 
below. The last two terms of Eq. (1) are included because of the elastic 
nature of a polymer; they express the entropic contribution to the free 
energy due to swelling or contraction of the polymer. The quantity 3(a2 
- 1)/2 is obtained from the probability that the polymer will occur in a 
configuration consistent with the deformation specified by a. As a de- 
scribes distances between polymer segments, In a3 is seen to be related to 
the term of ideal solution theory that contains the logarithm of the solute 
concentration. 

Flory minimized the free energy, given by Eq. (l), as a function of a, 
thereby obtaining the effects of excluded-volume and other intramolecular 
interactions on the expansion factor. After integrating Eq. (1) and then 
setting the derivative with respect to a equal to zero, he obtained the 
well-known equation, 

(2) a 5 -  a 3 =cz 
(3) 

where C is a constant; (hi)  is an initial value of the rms end-to-end length 
before intramolecular interaction is considered, i.e., the value in a theta 
solvent. Also, V1 is the solvent molecular volume and V, the polymer 
molecular volume; V, = MriJ/N~ where Mr is the molecular weight, iJ is the 
partial specific volume, and N A  is Avogadro’s number. The numerical 
constant C has the value 33/2/2 = 2.598 with Flory’s model; for further 
discussion of the value of C from other models, see Stockmayer.22 Equation 
(2) is valid only for values of (Y in the neighborhood of one or greater, i.e., 
in the range where the segments occupy only a small fraction of the solution 
volume, as for dissolution in a good solvent. 

To describe the condensation of a polymer such as DNA, we follow Flory’s 
method, but extend it to describe the collapse of a single chain into a small 
compact form. Although the total overall polymer concentration is very 
low, the collapsed polymer will occupy a significant fraction of the volume 
within its domain and will have a high segment density. This requires 
adding a term to Flory’s free energy expression to make it applicable to a 
solution in which the density of segments is high. 

We make the same approximations used to obtain Eq. (1). A lattice 
model is assumed in which both the solvent molecules and the polymer 
segments occupy equivalent lattice sites. To calculate the free energy, we 
start with a small volume element which has a uniform segment density. 
In counting the number of ways the ith polymer segment can be placed on 

2 = (1/2 - x)( vi/21/2v1)(3/7r (hi))”Z 
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lattice sites within that volume, it is assumed that the probability that a 
site is unavailable for occupancy is just equal to the volume fraction of all 
the previously placed segments. Hence the expectancy of a cell being oc- 
cupied is approximated by an average, and no specific account is taken of 
the spatial continuity of the earlier placed segments in the chain. 

To determine the free energy of the entire molecule, the polymer domain 
is divided into spherical shells, each of which has a uniform segment density 
that is a Gaussian function of the distance r from the center of the molecule. 
The segment volume fraction is 

(4) 

To perform the integration in Eq. (11, it  is then necessary to replace u1 by 
1 - u g  and to expand the logarithm in the power series. To have the free 
energy behave properly in the collapsed state, it is necessary to go at  least 
as far as the third power of ug, which is one term beyond that needed by 
Flory in his original derivation. The following expression is the result, and 
is the same as Flory’s except for an additional term in a+: 

u p ( r )  = V, (3/a T 1 / 2 (  hi ) 1/2)3 exp [-32r2/ (hoz)] 

+ 3(a2 - 1) - i n f f 3  (5) 
2 

where w = (3/a1/2(h~)1/2)3V,, and q is the lattice coordination number. 
The first two terms in brackets are cited by Flory (Ref. 12, p. 522) and are 
related to the expansion of In 01. This can be seen by recognizing that V, 
is the polymer molecular volume and that ( ~ l / ~ c r (  hg)1/2/3)3 is proportional 
to the total solution domain which the polymer encompasses; V, over this 
quantity, i.e., w/a3,  is therefore the polymer volume fraction. Flory’s 
method thus gives the free energy in a virial expansion. Since we have 
retained third-order terms in our analysis, we have also evaluated the third 
virial coefficient in order to include the energy of interaction in the a-6 
term. The derivation is in the Appendix, with the results shown in Eq. 
(5). 

I t  should be noted that the series obtained from expansion of In u1 and 
integration of the terms over space converges only for a3 > w,  so Eq. (5) 
applies only within this range.. In physical terms this means that the seg- 
ment volume fraction must be limited to values less than unity; a value of 
unity is the pure polymer phase, beyond which further collapse is not 
possible. In the Results section it is shown that the values of a for the 
collapsed state are in the valid range. 

The “energy of contact” between a DNA segment and the solvent is ac- 
tually a free energy, that is, a potential of average force of the environment 
in which the DNA is situated. Solvent, therefore, in the term “solvent- 
segment interaction,” encompasses all constituents of the solution other 
than DNA. An increase in the concentration of a component such as eth- 
anol, spermidine, or even another polymer such as PEO would result in an 
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increase in the average free energy of solvent-DNA interaction, corre- 
sponding to a higher value of x .  

An expression for a at the minimum in free energy can also be obtained 
from Eq. (5) by differentiation as before. The result is as follows: 

C z d  = y (6 )  

(7) 

Equation (6 ) ,  which has also been presented by de Gennes,20 has two pa- 
rameters, z and y. Values of z and y depend on three physical character- 
istics of the polymer-chain flexibility, the interaction energy with the 
solvent, and molecular weight. A measure of chain flexibility can be ob- 
tained in the following way: defining an effective segment length a by 

a 8  - a6 - 
y = 31/2(1 + 12x2/q - l6x3/q2)(3Vp/r (h?j )  V:/3)3 

a2 ( h i )  V l / V p  (84 

Vz/(h: )3V1 = Vf /a6  = w6 (8b) 

The quantity w = V!’3/u is recognized to be a measure of flexibility, since 
V:l3 is the actual intersegment spacing and a is its effective spacing. From 
Eq. (7), then, y is seen to contain two contributions: (1) the terms involving 
x and q ,  which were derived for the third virial coefficient, are due to the 
interaction between polymer and solvent; and ( 2 )  the polymer flexibility 
as given by w6. The value of y changes very little with x and q over the 
ranges of x and q which are of interest; y is therefore sensitive mostly to 
changes in flexibility. 

The parameter z is a function of all three polymer characteristics. This 
can be shown by substitution of Eq. (8b) into Eq. (3) :  

(9) 

where N V,/Vl. This expression for z contains the interaction term from 
the second virial coefficient, l/2 - x ,  and it contains the measure of flexi- 
bility, w.  The molecular-weight dependence appears in the ratio of mo- 
lecular volumes N .  The variable to which z is most sensitive is l/2 - x ;  as 
x changes from less than ‘12 to greater than l/2, z changes from positive to 
negative. 

gives the result 

z = 2--1/2(3/r)3/2(l/2 - x)NlPLw3 

RESULTS 

The free energy of T2 phage DNA, for fixed q and x ,  is plotted in Fig. 
1 as a function of the linear expansion factor, a. The curves are calculated 
from Eq. (5)  with M, = 1.24 X 108and ( / ~ ? j ) l / ~  = 2.52 X 10-4 cm. The value 
for (hi)  1/2 is determined from the viscosity data of T2 DNA in a 0.2M NaCl 
solution.25 These are not the theta conditions for DNA, but we do not 
expect the small difference to be serious. For small values of x ,  a single 
minimum in the free energy is observed at  a value of a,in near 1.0. Dis- 
solution of the polymer in a good solvent, where x < l/2, or a solvent with 
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Fig. 1. Free energy divided by kT for T2 DNA plotted as a function of the linear expansion 

factor for several values of x. The values of the parameters are M, = 1.24 X 108 g/mol, (ha)”2 
= 2.52 X cm, V,,/V, = lo5, and q = 10. The values of x are ( A )  0.4000; ( 0 )  0.5075, (0) 
0.5085; (0) 0.5100; and (V) 0.6500. 

only a slightly positive energy of interaction, x = results in expansion, 
i.e., amin > 1.0, due to excluded-volume effects, or in a small contraction, 
i.e., amin slightly less than 1.0, respectively. For small values of x the free 
energy calculated from Eq. (5) is the same as that stated by Flory. How- 
ever, as the polymer-solvent interaction becomes more unfavorable, x in- 
creases, and a second minimum appears in the free energy at N << 1.0. This 
is the collapsed state. A t  a certain “condensation” value of x, slightly 
greater than l/2, the two minima become equal in free energy. For x greater 
than the condensation value, the minimum a t  a << 1.0 is deeper, and the 
collapsed state becomes the stable conformation. As x continues to in- 
crease, the value of a at the “collapsed minimum” decreases. For example, 
for x = 0.51, we have amin= 0.097, and for x = 0.70, we have amin = 
0.037. 

Addition of the a-6 term results in the free energy becoming rapidly 
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positive for very small values of a. Without this term, the free energy 
function becomes more and more negative for small a when x > l/2; that 
is, there is no real and positive root for a which satisfies Flory’s Eq. (2) for 
large x. 

Changing the values chosen for q and for the ratio of the molecular vol- 
umes, V, /Vl, did not significantly alter the results of the free energy cal- 
culation. For q = 8 and 12  the minimum in free energy of the collapsed 
state was at amin = 0.057 and 0.056, respectively. Similarly, setting V, /V1 
= lo5 and 107 gave amin = 0.097 and 0.095, respectively. The condensation 
value of x was also found to change with q and V,,lV1 but, again, not sig- 
nificantly. Including the interaction parameter x in the a-6 term, as 
compared with having only the excluded-volume portion of that term, has 
some effect on amin; for x = 0.510, without the interaction, the collapsed 
value of a is 0.086, whereas with the interaction it is 0.097. 

The density of segments is markedly increased on condensation of the 
DNA molecule. To take an example of the predicted collapsed state of 
DNA, we find that for x = 0.55, the value of a at the minimum in free energy 
is 0.056. This corresponds to a reduction in the domain occupied by a single 
DNA molecule, as measured by ~ i ~ ( h ; ) 3 / ~ ,  by a factor of 6000. On collapse 
the DNA domain changes from one with about 0.003% of the volume oc- 
cupied by polymer segments to one with about 20% so occupied. (This 
value of a is within the limits for convergence as mentioned previously.) 

Though experimental results have not been reported for actual values 
of x for DNA solutions, other polymer binary systems show a small linear 
dependence of x on polymer concentration (Ref. 12, p. 512). That is, in- 
stead of x being a constant for a given solvent and temperature, it is found 
experimentally that in poor solvents x increases linearly as the polymer 
concentration increases. (For good solvents the data show that x decreases 
as polymer concentration increases, i.e., x is always < l/2; and no collapse 
is expected.) We have considered how a linear increase in x would affect 
our results. Equation (5) shows that the free energy minimum of the col- 
lapsed state becomes deeper at  large values of x. Thus if empirically x 
increases as the density of segments goes up, then the collapsed state be- 
comes even more stable relative to the extended form. 

To illustrate the collapse of DNA for molecules of various molecular 
weights, we have plotted the values of amin as a function of x (Fig. 2). The 
real and positive roots of Eq. (6) were calculated using the Newton-Raphson 
method to find the values of a at the minima in the free energy. The root 
at which the free energy has the deeper minimum is amin. The phenome- 
non is seen to be similar over the whole range of sizes within which DNA 
can be reasonably considered to be a random coil. (We have not taken 
thermal fluctuations from the lower to the higher minimum into account, 
which would tend to make the collapse somewhat diffuse, but the values 
of AG/kT in Fig. 1 suggest that this effect would make only a minor cor- 
rection.) 

The theoretical values of amin shown in Fig. 2 can be used to calculate 
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Fig. 2. Values of linear expansion factor, amin, are shown as a function of the DNA-solvent 

interaction parameter x for different molecular weights of DNA. The positions of the minima 
were calculated from Eq. (6), which was solved numerically by the Newton-Raphson method. 
In the case of three real and positive roots satisfying Eq. (6), the value of amin plotted corre- 
sponds to the deeper minimum in the free energy of Eq. (4). The curves are for q = 10 and 
for ( W )  M ,  = 2.0 X lolo, (h; ) l l2  = 4.26 X cm, Vp/V1 = 1.6 X lo7; (0) M ,  = 2.5 X 109, 

cm, Vp/Vl  = 1 X lo5; (0 )  T7 with M ,  = 2.5 X lo7, (h$)'l2 = 1.02 X cm, Vp/V1 = 2 X lo4; 
and (A) M,  = 2 X lo6, 

= 1.34 X lOP3cm, Vp/V1 = 2 X lo6; (x) T2 withM, = 1.24 X lo8, (h;)'I2 = 2.52 X 

= 2.3 X cm, Vp/V1 = 1.6 X lo3. 

a diameter of the collapsed DNA and this diameter compared with that 
determined by experiment. Dore et al.9910 obtained a diameter from 
scattering data assuming spheres. They report a value of 0.15 pm for the 
diameter of T2 DNA just after immersion in acid solution. We compare 
this with the calculated diameters of 0.08 pm for a,;, = 0.04 and 0.2 pm 
for amin = 0.1 (see Fig. 1) to find reasonable agreement. 

The collapse resembles a phase transition, such as that between gas and 
liquid, with a,in analogous to volume and x (or z )  to temperature. Looking 
at Eq. (6), we see that there is a third parameter, y ,  the flexibility parameter. 
This raises the question of whether varying y would cause the collapse 



INTERNAL CONDENSATION OF DNA 1495 

transition to disappear at a critical point, analogous to the critical point 
of a gas. 

Figures 3 and 4 illustrate that there is indeed critical behavior in this 
system. Values of a at the deeper minimum in free energy are related to 
the solvent-segment interaction parameter x, as shown in Fig. 3, and are 
related to the parameter y ,  as shown in Fig. 4. The tie lines on the graphs 
indicate the point at which the deeper minimum in free energy changes from 
the root a t  a close to 1.0 to the one at  a close to 0. The graphs show a 
critical point. The values of Cz and y at  the critical point are approxi- 
mately -0.2464 and 0.0227. (We state the critical values in terms of Cz 
and Y because in these terms they are independent of molecular weight, 
etc. For T2 DNA, the corresponding values are x = 0.5041 and ( hi)1/2 = 
7.02 X cm.) As can be seen in Fig. 3, the collapse is continuous, not 
discontinuous, as x is changed for values of y greater than the critical 
value. 

de Gennes20 also recognized the existence of a critical point; however, 

,5050 

x ,5045 

,5040 

Fig. 3. Phase transition to the polymer collapsed state for T2 DNA. Holding (h;)' /* 
constant for each curve, the value of a,in was determined as in Fig. 2 for various x. M,, q, 
and V,,/Vl are the same as in Fig. 1. The values of (h i )  1/2 and y are (A) 8.24 X cm, 0.0087; 
(0) 7.47 X cm, 0.0219; (X)  7.02 
X cm, 0.0227; (0) 6.90 X cm, 0.0251; and (v) 6.35 X cm, 0.0414. 

cm, 0.0156; ( 0 )  7.27 X cm, 0.0184; (v) 7.06 X 
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Fig. 4. Phase transition to the polymer collapsed state for T2 DNA. Holding x constant 

for each curve, amin was determined as in Fig. 2 for various values of the flexibility parameter 
y .  M,, q, and V,/V, are the same as in Fig. 1. The values of x are ( A )  0.50400; (0 )  0.50410; 
(v )  0.50415; (m)  0.50420; ( 0 )  0.50440; (A) 0.50470; and (0) 0.50500. 

the critical value of y which he reported is 0.038, slightly larger than our 
value. We do not know the cause of this. 

We should note that in our analysis y is varied by changing the flexibility 
parameter w ,  which also leads to a change in the value of Cz. That is, since 
y and z are related through Eqs. (7)-(9), we cannot vary them indepen- 
dently to obtain the critical values. 

DISCUSSION 
Intramolecular association between polymer segments is greater on 

dissolution in a poor solvent than on dissolution in a good solvent. We 
distinguish between two possible consequences for poor solvent systems. 
When the polymer concentration is such that the density of molecules is 
high and the frequency of bimolecular encounters is substantial, the 
polymer will tend to associate with other polymer molecules and form a 
separate, more concentrated phase. 
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When the polymer is at very, very low concentrations, the same solvent 
conditions which result in this macroscopic phase separation lead to the 
monomolecular collapse of a chain. At these high dilutions the probability 
of one polymer domain overlapping a second domain is small. Therefore, 
intramolecular associations, in which one segment interacts with a second 
segment removed in chain sequence, but near in space, are more probable 
than intermolecular contacts. In order to reduce the frequency of sol- 
vent-polymer contacts in poor solvent conditions, the polymer segments 
join together, resulting in a large decrease in the surface area available to 
the solvent. If the flexibility of the chain is low, as in DNA, the result is 
a phase transition in which there is a discontinuous change in the hydro- 
dynamic volume; the open, extended polymer configuration changes 
abruptly into a small, compact form with high density of segments. Of 
course these compact forms may be metastable with respect to further 
aggregationlo; whether or not this is so is not clear. 

To describe the phase transition, we have formulated an expression for 
the free energy of a chain molecule with a high segment density based on 
the polymer solution theory developed by Flory. The model used assumes 
a Gaussian distribution of segments in both the expanded and collapsed 
form. It is unlikely that the collapsed DNA configuration is Gaussian; for 
example, the collapsed state may have some crystalline order.5 However, 
description of a condensed phase using some other model would be of du- 
bious value until further information about the actual configuration in the 
collapsed state is available. Flory's model tends to ignore details concerned 
with the fact that segments of the chain are connected rather than being 
distributed in spherical shells of uniform density. Nevertheless, the for- 
mulation fits the experimental data on concentrated polymer solutions well 
and appears to be suitable to model the condensation behavior of DNA. 

In our analysis of the collapsed state of DNA, no consideration is given 
to the molecular nature of solvent. The condensation caused by PEO, or 
any other polymer, is treated in the same manner as that caused by the 
addition of a poor solvent composed of small molecules. That is, in both 
cases an attraction between polymer segments is induced by the preference 
of the solvent molecules to be in contact with other solvent molecules, re- 
sulting in a transition to a collapsed DNA particle at the condensation value 
of x. This assumption can be somewhat justified by the behavior of other 
ternary systems composed of solvent and two polymers; the addition of the 
second polymer brings about a phase transition similar to that caused by 
the addition of a poor solvent, or caused by lowering the temperature (Ref. 
12, Chap. 13; Ref. 26, Chap. 2) 

Figure 3 shows that a more flexible polymer, having a larger y value, 
undergoes collapse at  a lower value of x. We found that the transition to 
the collapsed state has a critical point; for highly flexible chains, whose value 
of y is greater than the critical value, there is only a gradual change in the 
size of the polymer domain. DNA, which is a rather inflexible chain, shows 
a pronounced two-phase region. The actual value of y for T2 DNA is 1.06 
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X cm3, equivalent to a base pair); this is 
much smaller than the critical value of 0.0227. In contrast we may take 
a typical synthetic polymer such as polystyrene. Using M,. = 1.74 X 106, 
V1 = 1.67 X we find 
that y = 0.53, much larger than the critical value. Hence polystyrene 
should show only a gradual collapse. Single-chain polynucleotides are an 
intermediate case. These molecules at neutral pH and high salt have values 
of y not much less than the critical value. Considering that such a simple 
theory is not expected to be quantitatively accurate near the critical point, 
it is not possible to predict whether the transition with single-chain poly- 
nucleotides is continuous or discontinuous. 

Experiments have shown that a collapsed state of DNA does occur, but 
no data have been reported which may be used to ascertain the accuracy 
of the free energy calculation presented here. On the other hand, no dis- 
continuous collapse transition has been reported for a synthetic polymer, 
as far as we know. Mazur and McIntyreZ8 and Nierlich et al.29 have mea- 
sured a by scattering from polystyrene samples of high and low molecular 
weights as a function of temperature through the theta point; although they 
find a rapid change near T = 8, the data actually appear to follow smooth 
curves without apparent breaks, which is in qualitative accord with the 
theory reported here. 

(assuming V1 = 1.2 X 

cm3 (a styrene unit), x = 0.5, and ho = 900 

APPENDIX: DETERMINATION OF THE THIRD VIRIAL 
COEFFICIENT 

By Flory’s method, evaluation of the configurational free energy of a 
single polymer molecule requires expansion of ln(1 - U Z ) .  As the polymer 
collapses, the segment density increases substantially, and intersegmental 
contacts become frequent. It is therefore necessary to add the term in the 
square of the volume fraction, i.e., a+, to the original free energy function 
used by Flory. We accomplish this by using the virial. expansion theory 
to calculate the third virial coefficient. (The next few higher powers of the 
volume fraction seem to be unimportant.20) 

First, we show that Flory’s expression can indeed be derived from a virial 
expansion. The virial expansion of the osmotic pressure gives an expression 
for the partial free energy of the solvent, Gl. Using the Gibbs-Duhem 
relation, we obtain the partial free energy of the solute G2, which, for this 
purpose, is the free energy of the polymer segments. These expressions 
are 

G2 = -kT[-ln u2 + (1 - 2B2)u2 + (Bz - 3B3/2)u; 

B2 and B3 are the second and third virial coefficients, respectively; V1 and 
V2 are molecular volumes of the solvent and segment, respectively; and u 2  

is the segment volume fraction. In Eq. (A2), C1 is a constant of integration. 
The free energy of mixing n l  solvent molecules with n2 segments is 

- 
GI - G f  = - V l n  = - (kTVl/V2)(~2 + B ~ u ;  + B ~ U ;  + - - .) (Al)  

- 

+ B3Uz3 + . * * I  + C1 (A2) 
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AG, = nl(G1 - Gq) + ns(G2 - G$') (A3) 
Substitution of Eqs. (Al)  and (A2) into Eq. (A3) and collecting terms in 
equal powers of the segment volume fraction gives the final equation for 
mixing: 

AG,IkT = nz(ln u2 - 1 + B2uZ + (l/2)B3u; + C1- Gg) (A41 

Henceforth, n2, the number of polymer segments, is to be considered as 
constant, while u2, and hence nl ,  is variable. 

We wish to compare Eq. (A4) with the mixing portion of the free energy 
found by Flory. [In deriving the expression for the configurational free 
energy of a single polymer molecule, Eq. ( l ) ,  Flory distinguished between 
the free energy due to mixing the solvent and the polymer and that due to 
the elastic behavior of the polymer. The contributions from mixing are 
the terms inside the brackets of Eq. ( l ) ,  and those from the rubber elasticity 
theory are 3(a2 - 1)/2 - In a3. See Ref. 12, Chap. 12 for details.] For the 
case of a single polymer molecule, the expression Flory derived for the free 
energy of mixing did not include n2 In u2. That is, for the case of x = 0, the 
integrand in Eq. (1) is 

AGF/kT = n l  In u1 
(A5) 

To make the transition from the ideal solution case to the polymer lattice 
theory, the polymer is considered as a cloud of noninteracting segments. 
In the ideal solution case, n2 In u2 represents the change in the number of 
configurations available to the solute when the volume changes. However, 
for a polymer molecule, the solute consists of connected segments, and the 
change in the number of configurations accompanying a change in volume 
is not the same as that for nonconnected molecules (segments). Thus n2 
In u z  does not explicitly appear in the polymer free energy but is replaced 
by the elasticity terms. Therefore, to equate terms in the free energy from 
Eq. (A4) with the terms in brackets in Eq. ( l ) ,  we subtract the n2 In u2 from 
Eq. (A4). We compare 

AG,/kT - n2 In u2 = n2(- 1 + B2u2 + (1/2)B3~i + C1 - Gg) (A6) 

= AG,/kT - n 2  In u 2  

and 

(A7) 

In the last line we have substituted n l  = n2(l  - u2) /u2,  which is true if V1 
= vz. 

We now proceed to calculate the virial coefficients from a simple lattice 
model. Using a standard formula, we have 

AGFIkT = nl(X - l)u2 - nl(uz/2 + u23/3 + - -) 
= nz[x - 1 + (lI.2 - x>u2 + u;/6 + - - -1 

where wi; is the potential of average force between segments i and j .30 With 
the lattice model we replace the integral by a sum and write 
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1 

where gij represents the expression in brackets in Eq. (A8) over V2 and 
where the summation is over all positions of a segment j on sites in the 
neighborhood of the site occupied by segment i. The potential wi, is in- 
finity when i and j are coincident, and since the volume of a site is V2, gii 
becomes -1. We assume that w. '  has a small negative value when j is ad- 
jacent to i (an attractive potential), so that in this case gij = {, where (+ 
measures the strength of the attraction. We further assume that wi, and 
gij are zero elsewhere. 

In this way we get 

B z  = - - C g . .  
11 2 j  

? 

Bz = '/A1 - q 0  

where q is the lattice coordination number. 

of u2. We find that the two are the same if 
Now we compare the terms in Eqs. (A6) and (A7) with the same power 

( A l l )  

x = q!Y2 (A12) 

B2 = Yz - x 
Substitution of Eq. (A101 for B2 leads us to identify x as 

This is reasonable, since x was originally introduced with the heat of mixing, 
which must result from the attractive forces represented by (+. 

Using-the same potentials as for BL,  the expression for the third virial 
coefficient is 

= y3 (1 + 3qj-2 - 2q(+3) 

Substituting Eq. (A12) into Eq. (A13), we have the third virial coefficient 
as it appears in Eq. (5): 

B3 = I /3( l  + 12x2/4 - 16x3/q2) (A141 

Comparing Eq. (A14) to the coefficient of the u;  term in Eq. (A7), we see 
that the terms are the same, but that we have now, in addition, a contri- 
bution resulting from intersegment attraction. 
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This work was supported in part by NIH Grants GM-11916 and GM-07313, and also by 
an IBM Graduate Fellowship awarded to C.B.P. 

References 

1. Lerman, L. S. (1971) Proc. Natl. Acad. USA 68,1886-1890. 
2. Evdokimov, Yu. M., Platonov, A. L., Tikhonenko, A. S. & Varshavsky, Ya. M. (1972) 

FEBS Let t .  23,180-184. 



INTERNAL CONDENSATION OF DNA 1501 

3. Jordan, C. F., Lerman, L. S. & Venable, J .  H. Jr. (1972) Nature [New Biol.] 236,67- 

4. Maniatus, T., Venable, J. H. Jr. & Lerman, L. S. (1974) J.  Mol. Biol. 84,37-64. 
5. Lerman, L. S. & Allen, S. L. (1973) Cold Spring Harbor Symp. Quant. Biol. 38,59- 

6. Lang, D. (1973) J.  Mol. Biol. 78,247-254. 
7. Lang, D., Taylor, T. N., Dobyan, D. C .  & Gray, D. M. (1976) J .  Mol. Biol. 106, 97- 

8. Gosule, L. C .  & Schellman, J .  A. (1976) Nature 259,333-335. 
9. Dore, E., Frontali, C. & Gratton, E. (1972) Biopolymers 11,443-459. 

70. 

72. 

107. 

10. Dore, E., Frontali, C. & Notargiacomo, S. (1973) J .  Mol. Biol. 78,391-393. 
11. Laemmli, U. K. (1975) Proc. Natl. Acad. Sci. USA 72,4288-4292. 
12. Flory, P.  J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, 

13. Morawetz, H. (1975) Macromolecules in Solution, Wiley, New York. 
14. Edwards, S. F. (1966) Proc. Phys. SOC. 88,265-280. 
15. Isihara, A. & Isihara, C .  H. (1975) Physica 81A, 623-632. 
16. Orr, J .  C. (1947) Trans. Faraday SOC. 43,12-27. 
17. Domb, C. & Barrett, A. J .  (1976) Polymer 17,179-184. 
18. Zimm, B. H., Stockrnayer, W. H. & Fixman, M. (1953) J.  Chem. Phys 21, 1716- 

19. Domb, C. (1974) Polymer 15,259-262. 
20. de Gennes, P. G. (1975) J .  Phys. Lett. (Paris) 36.55-57. 
21. Stockmayer, W. H. (1977) Br. Polym. J .  9, 89-91. 
22. Stockmayer, W. H. (1960) Makromol. Chem. 35,54-63. 
23. Naghizadeh, J. & Massih, A. R. (1978) Phys. Reu. Lett. 40,1299-1302. 
24. Frisch, H. L. & Fesciyan, S. (1979) J.  Polym. Sci., Polym. Lett. Ed., in press. 
25. Crothers, D. M. & Zimm, B. H. (1965) J.  Mol. Biol. 12,525-536. 
26. Albertsson, P. A. (1971) Partition of Cell Particles and Macromolecules, 2nd ed., Wiley, 

27. Outer, P., Carr, C I. & Zimm, B. H. (1950) J .  Chem. Phys. 18,830-839. 
28. Mazur, J. & McIntyre, D. (1975) Macromolecules 8, 464-476. 
29. Nierlich, M., Cotton, J. P. & Farnoux, B. (1978) J .  Chem. Phys. 69,1379-1383. 
30. McMillan, W. G. & Mayer, J .  E. (1945) J .  Chem. Phys. 13,276-305. 

New York. 

1723. 

New York. 

Received September 24,1978 
Accepted December 14,1978 




