#### **PHRM 836 September 15, 2015**

# Enzyme Catalysis: regulation and inhibition

#### Devlin, section 10.10, 10.11, 10.9

- 1. Discussion of statins: substrate-analogue inhibitors of HMG-CoA reductase
- 2. NSAIDs
  - Selectivity of COX inhibitors
- 3. Concept of cooperativity related to allosteric enzymes
- 4. Kinetics of enzyme inhibition
  - Mechanisms
  - Changes in  $K_M$  and  $V_{max}$
- 5. Enzyme inhibitors
  - Irreversible
  - Mechanism-based

## Statins: substrate-analogue inhibitors of HMG-CoA reductase

- Why are statins effective at lowering cholesterol?
- Why is it advantageous that statins have nanomolar affinity?
- Explain the observation that statins are competitive with HMG-CoA.
- Is it likely that statins are competitive with NADPH?
- If HMG-CoA reductase was a fully rigid molecule, would Pfizer be marketing Lipitor?

#### **NSAIDs**

- Non-steroidal anti-inflammatory drugs
- Block prostaglandin production.
- Irreversibly or reversibly inhibit cyclooxygenase (COX).
- Examples: aspirin, ibuprofen, naproxen
- Commonly inhibits COX-I and COX-2 nonspecifically
  - COX-1: constitutive enzyme
  - COX-2: inducible and produced in response to inflammation
  - Nonspecific inhibition may result in side effects including gastrointestinal bleeding.

Arachidonic acid PGG<sub>2</sub>

## Comparison of two cyclooxygenases: need for selective inhibition



- **Examples:** 
  - Celecoxib (Celebrex<sup>®</sup>)
  - Rofecoxib (Vioxx<sup>®</sup>)
- ► COX-2 has a valine residue (V523) near the active site, which is smaller than isoleucine (I523) in COX-1.
- ► COX-2 selective inhibitors do not bind COX-I due to the steric hindrance.

PDB entry 1CX2 Cox-2-celecoxib complx



Clinical correlation 10.8

- **Examples:** 
  - Celecoxib (Celebrex<sup>®</sup>)
  - Rofecoxib (Vioxx®)
- ► COX-2 has a valine residue (V523) near the active site, which is smaller than isoleucine (I523) in COX-1.
- ► COX-2 selective inhibitors do not bind COX-I due to the steric hindrance.

PDB entry 1CX2 & 1PTH Cox-2-celecoxib complx



Clinical correlation 10.8

Flower RJ, Nat Rev Drug Disco, 2:179, 2003

Ratio indicates selectivity

IC<sub>50</sub> values and COX2/COX-1 ratios of different NSAIDs in guinea pig peritoneal macrophage model.

(Engelhardt et al. Journal Inflammatory Research 1995, Volume 44, Pages 422 - 433.)

| NSAIDs       | COX-2 IC sq    | COX-1-IC <sub>50</sub> | Ratio COX-2 / COX-1 |
|--------------|----------------|------------------------|---------------------|
|              | micromol/litre | micromol/litre         |                     |
| Meloxicam    | 0.0019         | 0.00577                | 0.33                |
| Diclofenac   | 0.0019         | 0.000855               | 2.2                 |
| Piroxicam    | 0.175          | 0.00527                | 33                  |
| Tenoxicam    | 0.322          | 0.201                  | 15                  |
| Indomethacin | 0.00636        | 0.00021                | 30                  |
| Tenidap      | 47.8           | 0.393                  | 122                 |

# Summary: examples of drugs as enzyme inhibitors

- The values determined for  $K_M$  and  $V_{max}$  in the presence of an inhibitor compound are the <u>apparent</u> values
- The apparent  $K_M$  and  $V_{max}$  differ by the amount  $(1+[I]/K_I)$  relative to the actual  $K_M$  and  $V_{max}$
- Whether  $K_M$  and/or  $V_{max}$  are affected by an inhibitor molecule depends on the type of inhibition
- Statins inhibit HMG-CoA reductase and are an example of two types of inhibition (competitive for HMG-CoA, but not for NADP)
- Binding of statins requires HMG-CoA reductase to be flexible in order to fit the large aromatic groups of statins into the binding site
- Some NSAIDS are examples of designing selective inhibitors; they
  preferentially inhibit COX-2 over COX-1.

Misregulation causes disease: *Gout* Clinical Correlation 10.13:

- Inflammatory disease caused by overproduction of uric acid, a highly insoluble compound.
- Uric acid is end product of purine degradation
- Hyperuricemia can be due to overproduction of purine nucleotides resulting from abnormal enzyme activity at various metabolic steps.
  - One candidate enzyme is PRPP synthetase.
  - The product PRPP (5-phospho-ribosyl pyrophosphate) is an intermediate in purine biosynthesis;
  - excessive PRPP synthetase activity leads to uric acid overproduction
- Patient study of gout:
  - Increased PRPP levels in red blood cells
  - But, PRPP synthetase had normal  $K_M$  and  $V_{max}$  and normal cellular levels

So WHAT'S THE PROBLEM?

- Substrate cooperativity in enzyme catalysis
- Activators and inhibitors
  - Allosteric effectors
  - Feedback inhibition by the final product of a pathway
- Cellular enzyme concentration
  - Regulation at the gene expression level
- Covalent modification
  - Phosphorylation
  - Proteolysis
- Localization in the cell
  - Spatial separation between enzyme and substrate

# Regulation of enzyme activity: cooperativity

- Cooperativity: multimeric (i.e. multiple subunits) enzyme in which the activity of one subunit affects the activity of the other subunits; subunits are not independent.
  - Usually  $K_M$  is changed, but for some enzymes  $k_{cat}$  changes, or both change
  - Positive cooperativity is common; negative cooperativity does occur
  - Apparent in velocity curves and in Lineweaver-Burk double reciprocal plots



Figure 10.65

# Regulation of enzyme activity: cooperativity

Cooperativity: what is its purpose?



http://chemwiki.ucdavis.edu/

# Regulation of enzyme activity: cooperativity

Cooperativity: what is its purpose?

Consider the range of substrate concentrations needed to vary from nearly inactive to nearly active.



http://chemwiki.ucdavis.edu/

# Regulation of enzyme activity: allosteric activation and inhibition

- Effectors are metabolic inhibitors or activators (small molecules) affect activity of allosteric enzymes
  - Alter the affinity of substrates  $(K_M)$  and/or the reactivity  $(V_{max})$
  - Can be either positive (activator) or negative (inhibitor) effect
- Bind noncovalently to a site distinct from the active site
  - not modified chemically during reaction
- Most often multiple subunits, either identical or nonidentical
  - Effector binding leads to a conformational change that propagates to other subunits via contacts at the subunit interface
  - Heterotropic: ligand in effector site not the same as the substrate ligand
  - Homotropic: same ligand as substrate (not common)



Green: positive effector binding changes both subunits to a higher affinity form

# Regulation of enzyme activity: allosteric activation and inhibition



Figure 10.64

Green: positive effector binding changes both subunits to a higher affinity form



Purple: negative effector (not shown) binding changes both subunits to a low affinity form → inhibits activity

Clinical Correlation 10.13, Gout:

- So what about PRPP synthetase?
  - Increased PRPP levels in red blood cells of patients
  - PRPP synthetase had normal  $K_M$  and  $V_{max}$  and normal cellular levels

**PRPP** 

PRPP is a metabolite precursor in purine nucleotide biosynthesis. PRPP synthetase:

- catalyzes synthesis from ribose 5-phosphate and ATP
  - regulated by phosphate ion (activator) and ADP (inhibitor)
    - absolute requirement for P<sub>i</sub>
    - …but sensitivity to P<sub>i</sub> is normal in these patients

Regulated by effectors

Clinical Correlation 10.13, Gout:



**Allosteric sites** 

**PRPP** 

PRPP is also inhibited by ADP; the increase in PRPP arose b/c ADP did not inhibit the synthase ... thus, a remaining possibility is that a mutation in this allosteric site led to failure of feedback control.

## Summary of Enzyme Regulation and Inhibition

- Multimeric enzymes are often allosteric and show cooperative behavior in an initial velocity vs [S] curve. The sigmoidal behavior enables a strong dependence on small changes in [S].
- Allosteric enzymes are often regulated by effector molecules that are either activators or inhibitors. Effectors often bind at the oligomeric interfaces to change the allosteric response.