PHRM 836 September 10, 2015

Enzyme Catalysis: inhibition

Devlin, section 10.10, 10.11, 10.9

- 1. Enzyme inhibition
 - Mechanisms
 - Changes in K_M and V_{max}
- 2. Enzyme inhibitors
 - Transition state analogues
 - Irreversible
 - Mechanism-based
- 3. Statins, structural insights

Enzymatic catalysis review topics

- Rate equations
- Michaelis-Menten equation
- $V_{\text{max}}, K_{\text{m}}, k_{\text{cat}}, k_{\text{cat}}/K_{\text{m}}$
- Lineweaver-Burk plot
- Basic ideas of enzyme inhibition and effect on kinetics
- Review Devlin 10.7

Enzyme inhibition

$$E+S = E-S \xrightarrow{\kappa_3} E+P$$

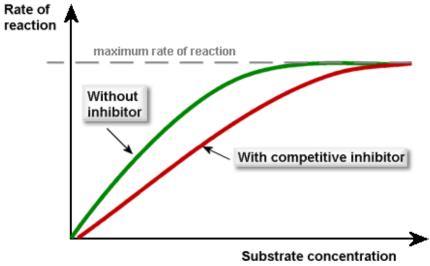
$$+|\downarrow\uparrow\rangle$$

$$+|\downarrow\uparrow\rangle$$

$$E-I = E-S-I \xrightarrow{\kappa'_3} E+P$$

Enzyme inhibition

Competitive inhibition

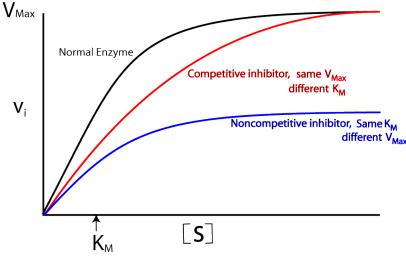

$$E + S \rightleftharpoons ES \longrightarrow E + P$$

$$+$$

$$|$$

$$\downarrow$$

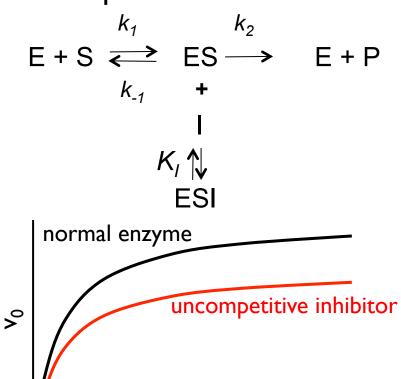
$$EI$$


Noncompetitive inhibition

$$E + S \rightleftharpoons ES \longrightarrow E + P$$

$$+ \qquad +$$

$$\downarrow \qquad \qquad \downarrow$$


$$EI \qquad ESI$$

Plots from http://alevelnotes.com/Enzyme-Inhibitors/148

Enzyme inhibition

Uncompetitive inhibition

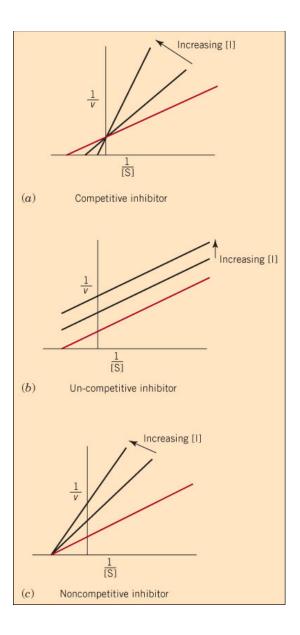
[S]

 V_{max} and K_M decrease

 K_M/V_{max} unchanged

Effects via Lineweaver-Burk

Uninhibited enzyme kinetics


$$v_0 = \frac{V_{\text{max}} [S]}{K_M + [S]}$$

$$v_0 = \frac{V_{\text{max}} \lfloor S \rfloor}{K_M + \lfloor S \rfloor} \qquad \frac{1}{v_0} = \frac{1}{V_{\text{max}}} + \frac{K_M}{V_{\text{max}}} \frac{1}{\lfloor S \rfloor}$$

Inhibited enzyme kinetics

intercepts; slope: give apparent V_{max} and K_M

apparent V_{max} and K_M values change by $(1+[I]/K_T)$

Apparent catalytic constants due to inhibition

Inhibition Type	K _M ^{app}	$oldsymbol{V_{max}}^{app}$
No inhibitor	$K_{\mathcal{M}}$	V_{max}
Competitive (inhibitor binds only free E)	$K_{M}\left(1+\frac{[I]}{K_{I}}\right)$	V_{max}
Non-competitive (inhibitor binds free E and ES complex with equal affinity)	K_{M}	$V_{\text{max}} / \left(1 + \frac{I}{K_I}\right)$
Uncompetitive (inhibitor only binds to ES complex)	$K_{M} / \left(1 + \frac{[I]}{K_{I}}\right)$	$V_{\text{max}} / \left(1 + \frac{I}{K_I}\right)$

$$K_{I} = \frac{\left[enz\right]\left[I\right]}{\left[enz \cdot I\right]}$$

Inhibition of two-substrate reactions

$$E + A \rightleftharpoons EA + B \longrightarrow E + P + Q$$

$$+ \qquad \qquad \downarrow$$

$$I_1 \qquad \qquad I_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$EI_1 \qquad EAI_2$$

- Inhibitors of multiple-substrate enzymes usually bind E or EA
 - ▶ Binds E: I is competitive against A.
 - ▶ Binds EA: I is competitive against B

Inhibitor Types: Transition-state analogues

- Enzymes stabilize the transition state more than substrate or product.
- A compound resembling the transition state (transition-state analogue) should bind more tightly to the enzyme than a compound resembling the substrate.
- Should be an excellent strategy for drug design... but isn't always successful.

Figure 10.60

(a) Proline racemase reaction

(b) Pyrrole-2-carboxylate

Inhibitor Types: Irreversible inhibitors

- Compounds that chemically modify and inactivate an enzyme
- Usually bind competitively with substrate, and react with active-site surface residues, not necessarily catalytic residues
- Utilize the binding specificity of the target enzyme for selectivity

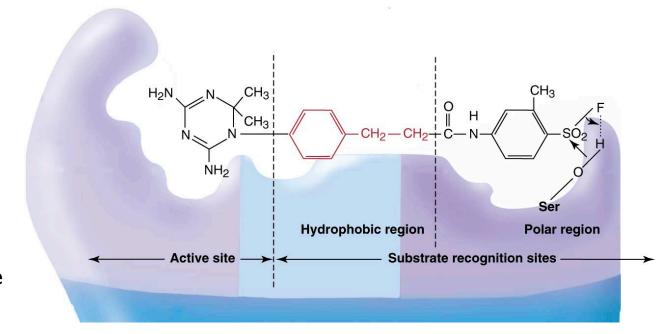
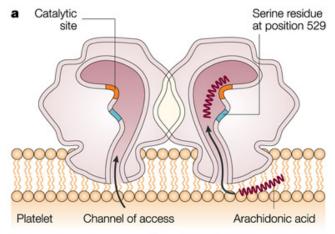
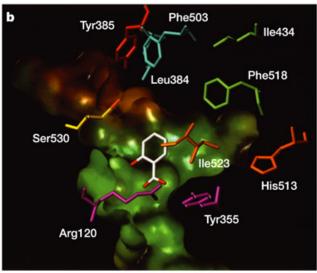




Figure 10.62: inhibition of tetrahydrofolate reductase

Example of an irreversible inhibitor:

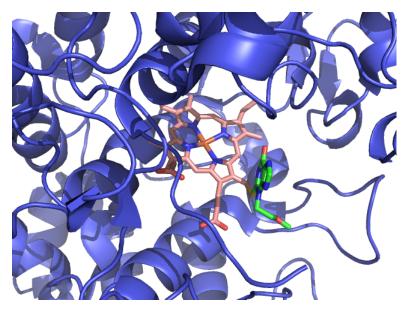
Aspirin inhibition of cyclo-oxygenases (COX)

Aspirin acetylates a serine residue (\$530) near (not at) active site and blocks substrate access

FitzGerald, Nat Rev Drug Discovery **2**, 879 (2003)

Inhibitor Types: Mechanism-based irreversible inhibitors

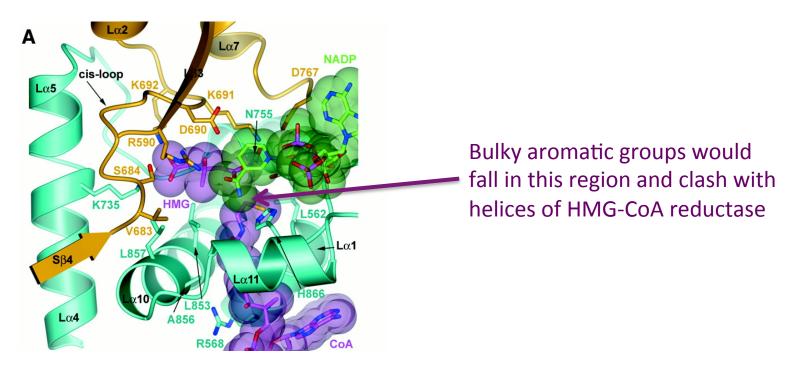
- Irreversible inhibitors that utilize the enzyme catalytic properties to generate a chemically active species.
 - Effective drug molecules: an innocuous reversible inhibitor is converted to an irreversible inhibitor
- Avoids side effects of highly reactive chemical compounds
- Also called suicide inhibitors, trojan-horses, and enzyme-activated substrate inhibitors (EASI)


Inhibitor Types: Mechanism-based irreversible inhibitors

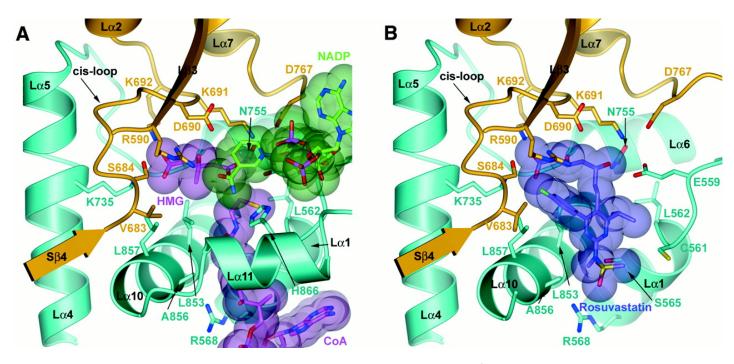
- Myeloperoxidase (MPO) promotes oxidative stress in inflammation
- MPO (in neutrophils) uses H₂O₂ to form reactive species (e.g. oxidizes chlorine) that cause oxidative damage to lipids, DNA, etc.
- MPO is a therapeutic target
 - Proposed inhibitor: 2-thioxanthines
 - Crystallographic structure of complex was determined

Crystal structure of MPO after inactivation by a thioxanthine TX2

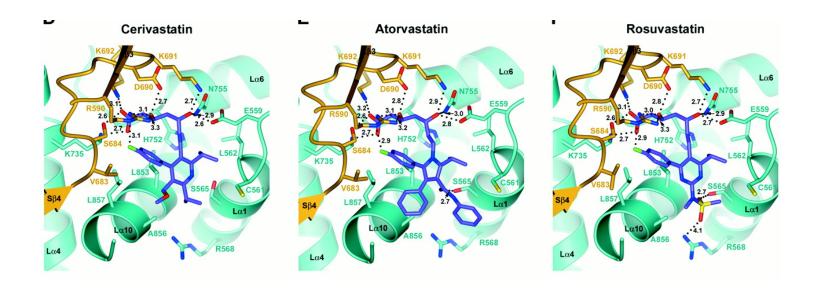
TX2 is covalently attached to the heme via a thioether bond between the exocyclic sulfur of the 2-thioxanthine ring and one of the heme methyl groups


E-I*

Tidén A et al. J. Biol. Chem. 2011;286:37578-37589


Atorvastatin (Lipitor®, Pfizer): 2009 sales of \$13.2 billion made it the best selling drug in the world

Atorvastatin (Lipitor®)


- HMG-CoA reductase catalyzes the deacylation of HMG-CoA to form mevalonate and CoA.
- Mevalonate
 - precursor to cholesterol
 - formation is committed step in cholesterol biosynthesis
- K_M for HMG-CoA and NADPH are μ M
- Merck Research Laboratories discovered potent HMG-CoA R inhibitor (1987)
 - Fermentation broth of Aspergillus terreus
 - Competitive with HMG-CoA
 - Later named lovastatin
 - Now a large number of statins are FDA approved, including atorvastatin

- Crystallographic structure determined for HMG-CoA reductase + HMG-CoA + NADP (2000)
 - Mevalonate moiety of HMG-CoA interacts with a loop of HMG-CoA R, helix La10 and La11 fold over substrate
 - Structure doesn't explain though how the statins inhibit the enzyme!
 If statins are assumed to bind as the mevalonate moiety of HMG-CoA, there would be no room for the bulky aromatic groups.

- Subsequent crystallographic structures determined for HMG-CoA reductase with various statins (Istvan, Deisenhofer, Science 2001 292, 1160) solved the puzzle
 - Statins do bind similarly to mevalonate moiety of HMG-CoA
 - In the statin-bound structure, residues near the C-terminus of helix L10 and all
 of helix L11 are disordered (and not observable by crystallography) and allow
 a shallow groove to accommodate the statin bulky aromatic groups

 Structures of three statins show that interactions with the mevalonate-like moiety are essentially identical for all three complexes and the binding modes are highly similar

Statins: inhibitors of HMG-CoA reductase [Answer before next class]

- 1. Why are statins effective at lowering cholesterol?
- 2. Why is it advantageous that statins have nanomolar affinity?
- 3. Explain the observation that statins are competitive with HMG-CoA.
- 4. Is it likely that statins are competitive with NADPH?
- 5. If HMG-CoA reductase was a fully rigid molecule, would Pfizer be marketing Lipitor?

Summary of Enzyme Regulation and Inhibition

- Small molecule inhibitors can alter either K_M or V_{max} or both.
- K_l is the inhibitory equilibrium binding constant that defines the efficacy of the inhibitor.
- Many drug molecules are small molecule inhibitors.
 These are characterized in terms of competitive binding as any other inhibitors and their structures are designed with similar concepts such as transition-state/substrate/product analogues, irreversible inhibitors, mechanism-based inhibitors.