PHRM 836 September 1, 2015

Protein structure-function relationship: Allostery and cooperativity illustrated by hemoglobin (Hb) and myoglobin (Mb)

Devlin, section 9.4

- 1. Physiological role of Hb
- 2. Structure of Hb and comparison with Mb
- 3. Cooperativity of binding O₂
- 4. Regulation of O₂ binding

Hemoglobin: physiological role = a transport protein

- Concentration in erythrocytes = 3x10⁸ molecules/ cell. High concentration!
- Function: Transport O_2 and CO_2 between lung and tissues.

erythrocytes

Structure of Hemoglobin

- All-α protein:
 7-8 helices labelled A to H
- tetrameric: $2 \times \alpha\beta$ dimer
- intersubunit interactions are critical for function

Hemoglobin, a heme protein

figure 9.21, Devlin

Prosthetic group

- Organic molecule needed for activity
- → Apoprotein = no prosthetic group
- → Holoprotein = + prosthetic grp

Heme

- Binds Fe
- → O₂ coordinates Fe of heme
- Causes red color
- Noncovalent association to Hb

Tetrameric Hb

Comparison with myoglobin (Mb)

- · Structure: single chain, also with heme.
 - → A monomeric "version" of hemoglobin
- Function: to store O_2 in muscle tissue.

Myoglobin

β chain of Hb

Comparison of Hemoglobin And Myoglobin

Features	Hemoglobin	Myoglobin
No. of Polypeptide	4 (2α, 2β)	1
No. of Oxygen Bound	4	1
Amino Acids	141 x 2 146 x 2	153 residues
Sites for transport	All cells	Skeletal muscle cells
Transport molecules	O ₂ , CO ₂ , NO	O ₂

O₂ Binding Curves

Fractional saturation of heme plotted against partial pressure of oxygen, pO_2 .

- Mb binding O_2 : single binding site; hyperbolic saturation curve
- Hb binding O_2 : 4 binding sites; sigmoidal binding curve indicates cooperativity, i.e. binding to one site alters affinity of subsequent binding

 P_{50} indicates O_2 affinity (see eqn 9.3, Devlin). Why??

$$Y = \frac{[XO_2]}{[XO_2] + [X]}, X = Mb \text{ or Hb}$$

O₂ Binding Curves

Cooperativity for ligand binding

- Binding at one site (i.e. heme for Hb) facilitates binding to the second site.
- Positive cooperativity is an increase in binding affinity for each O₂ bound.
- Hill equation & coefficient: n_H :
 - determined from the slope of a log-log plot
 - measures the degree of cooperativity

$$\log\left(\frac{\mathsf{Y}}{\mathsf{1}-\mathsf{Y}}\right) = \mathsf{const} + n\log(pO_2)$$

n=1 no cooperativity

n>1 positive cooperativity

Fig 9.25, Devlin 7e

O₂ Binding Curves

Cooperativity for ligand binding

- Binding at one site (i.e. heme for Hb) facilitates binding to the second site.
- Positive cooperativity is an increase in binding affinity for each O₂ bound.
- Hill equation & coefficient: n_H :
 - determined from the slope of a log-log plot
 - measures the degree of cooperativity

$$\log\left(\frac{\mathsf{Y}}{\mathsf{1}-\mathsf{Y}}\right) = \mathsf{const} + n\log(pO_2)$$

Slope at 50% saturation is equal to the Hill coefficient

Structural Basis of Hb cooperativity

Crystallography shows oxyhemoglobin and deoxyhemoglobin differ in quaternary structure.

- One αβ dimer is rotated relative to the second dimer.
- Changes interactions at dimer interface between $\alpha_1\beta_1$ and $\alpha_2\beta_2$

oxy-Hb is R state; deoxy-Hb is T state

O₂ binding changes the quarternary structure of Hb

O₂ binding changes the quarternary structure of Hb

Different view from~90° rotation about an axis in the plane of the slide

O₂ binding changes the quarternary structure of Hb

Different view from~90° rotation about an axis in the plane of the slide

Quarternary Change: how does O₂ binding induces it

deoxy Hb: Fe has only 5 ligands and is out-of-plane

oxy Hb: Fe has only 6 ligands and is in-plane

Quarternary Change

triggered by oxygen binding that allows Fe to move into

heme plane

drags proximal His in helix F and moves helix F

- this alters FG loop (of one chain) C
 helix (another chain) interactions
- changes are propogated to neighboring heme and increase affinity

oxy Hb: Fe in plane alters proximal His

Analogous to Fig 9.38, Devlin

Bohr Effect

Important in metabolizing tissues: CO_2 produced; leads to lower pH; reduces Hb affinity for O_2 .

- Additional <u>regulation</u> of oxygen binding is from the Bohr Effect
 - → Increase in [H+] (lower pH) decreases oxygen affinity, i.e. stabilizes deoxy Hb

$$\mathbf{Hb}^{\mathrm{T}} + \mathbf{4O}_{2} \Longrightarrow \mathbf{Hb}^{\mathrm{R}}(\mathbf{O}_{2})_{4} + \mathbf{nH}^{+}$$

$$increase$$

$$drives equil to left$$

by law of mass action

Structural basis of Bohr effect

- In deoxy-Hb, H146 forms salt bridge with D94.
- In oxy-Hb, dimer rotation disrupts this interaction and H⁺ is released:
 - → pKa in deoxyHb > pKa in oxyHb

$$Hb^{T}+4O, \longrightarrow Hb^{R}(O_{2})_{4}+nH^{+}$$

Deoxy-Hb Figure 9.30, Devlin

Structural basis of Bohr effect

pH changes are coupled to carbon dioxide levels: in erythrocytes, carbonic acid dissociates to bicarbonate and a proton:

$$CO_2 + H_2O \xrightarrow{\text{carbonic anhydrase} \atop \text{anhydrase}} H_2CO_3 \xrightarrow{\text{spontaneous}} HCO_3^- + H^+$$

 CO_2 produced in tissues is converted to HCO_3 which increases [H⁺] (i.e. decreases pH) and promotes deoxy form/oxygen release.

 HCO_3 is <u>transported in plasma</u> to lung, a process called isohydric transport, which accounts for ~80% of CO_2 transport to lungs.

Deoxy-Hb Figure 9.30, Devlin

Another Hb regulatory mechanism

2,3 bisphosphoglycerate (BPG)

- Allosteric effector: binds at a site different from O_2 and modulates Hb function. Check out fix in Devlin
- Effect is to change equilibrium for O_2 binding by lowering affinity, i.e. increasing P_{50} .
- binds to one form of Hb (deoxy-HB, not oxy-HB)
- Purpose: regulate binding under oxygen deficiency conditions. (Changes in BPG concentration occur over hours or days.)

$$Hb^{T}(BPG)+4O_{2} \longrightarrow Hb^{R}(O_{2})_{4}+BPG$$

Hb was one of first targets for allosteric drugs

Hb Variants

- Over 800 mutant Hb have been characterized
- Most are single amino acid substitutions
 - → Surface residues usually innocuous
 - → Internal residues destabilize the folded structure; carriers suffer from hemolytic anemia
 - \rightarrow Residues in heme binding pocket eliminate binding of O_2
 - Changes in the α1β2 interface changes in cooperativity. If oxy form is stabilized then release in tissues is less than normal. T form could also be stabilized.
- HbS, sickle-cell anemia
 - \rightarrow Substitution of $\beta6$ Glu, surface residue, by Val
 - Hb concentration is extremely high in red blood cells, nearly as dense as in a crystal
 - → E to V changes the surface and causes inter-deoxyHb binding, which leads to polymerization in RBCs

HbS, sickle-cell anemia

Glu 6 in the beta chain is mutated to valine. This change allows the deoxygenated form of the hemoglobin to stick to each other, as seen in PDB entry 2hbs

http://www.rcsb.org/pdb/101/motm.do?momID=41

Summary of hemoglobín and cooperativity

- 1.Hb transport function meets the physiological need to bind O_2 in lungs but release O_2 in tissue through several processes that affect the equilibrium between deoxy Hb^T and oxy Hb^R $(O_2)_4$
- 2. Positive cooperativity of O_2 binding derives from conformational changes, which propagate from the heme to certain tetrameric interfaces, and increases O_2 affinity
- $3.O_2$ binding Hb is linked to CO_2 generation in tissues through pH (Bohr effect). This linkage leads to CO_2 transport opposite in direction to that of O_2 .
- 4.O₂ binding affinity depends also on BPG concentration; BPG binds deoxy Hb and thus promotes release of O₂.