PHRM 836 September 1, 2015 Protein structure-function relationship: Allostery and cooperativity illustrated by hemoglobin (Hb) and myoglobin (Mb) #### Devlin, section 9.4 - 1. Physiological role of Hb - 2. Structure of Hb and comparison with Mb - 3. Cooperativity of binding O₂ - 4. Regulation of O₂ binding # Hemoglobin: physiological role = a transport protein - Concentration in erythrocytes = 3x10⁸ molecules/ cell. High concentration! - Function: Transport O_2 and CO_2 between lung and tissues. erythrocytes ## Structure of Hemoglobin - All-α protein: 7-8 helices labelled A to H - tetrameric: $2 \times \alpha\beta$ dimer - intersubunit interactions are critical for function ## Hemoglobin, a heme protein figure 9.21, Devlin #### Prosthetic group - Organic molecule needed for activity - → Apoprotein = no prosthetic group - → Holoprotein = + prosthetic grp #### Heme - Binds Fe - → O₂ coordinates Fe of heme - Causes red color - Noncovalent association to Hb ## **Tetrameric Hb** # Comparison with myoglobin (Mb) - · Structure: single chain, also with heme. - → A monomeric "version" of hemoglobin - Function: to store O_2 in muscle tissue. Myoglobin β chain of Hb # Comparison of Hemoglobin And Myoglobin | Features | Hemoglobin | Myoglobin | |------------------------|---------------------------------------|-----------------------| | No. of
Polypeptide | 4 (2α, 2β) | 1 | | No. of Oxygen
Bound | 4 | 1 | | Amino Acids | 141 x 2
146 x 2 | 153 residues | | Sites for transport | All cells | Skeletal muscle cells | | Transport
molecules | O ₂ , CO ₂ , NO | O ₂ | # O₂ Binding Curves Fractional saturation of heme plotted against partial pressure of oxygen, pO_2 . - Mb binding O_2 : single binding site; hyperbolic saturation curve - Hb binding O_2 : 4 binding sites; sigmoidal binding curve indicates cooperativity, i.e. binding to one site alters affinity of subsequent binding P_{50} indicates O_2 affinity (see eqn 9.3, Devlin). Why?? $$Y = \frac{[XO_2]}{[XO_2] + [X]}, X = Mb \text{ or Hb}$$ # O₂ Binding Curves ### Cooperativity for ligand binding - Binding at one site (i.e. heme for Hb) facilitates binding to the second site. - Positive cooperativity is an increase in binding affinity for each O₂ bound. - Hill equation & coefficient: n_H : - determined from the slope of a log-log plot - measures the degree of cooperativity $$\log\left(\frac{\mathsf{Y}}{\mathsf{1}-\mathsf{Y}}\right) = \mathsf{const} + n\log(pO_2)$$ n=1 no cooperativity n>1 positive cooperativity Fig 9.25, Devlin 7e # O₂ Binding Curves Cooperativity for ligand binding - Binding at one site (i.e. heme for Hb) facilitates binding to the second site. - Positive cooperativity is an increase in binding affinity for each O₂ bound. - Hill equation & coefficient: n_H : - determined from the slope of a log-log plot - measures the degree of cooperativity $$\log\left(\frac{\mathsf{Y}}{\mathsf{1}-\mathsf{Y}}\right) = \mathsf{const} + n\log(pO_2)$$ Slope at 50% saturation is equal to the Hill coefficient ## Structural Basis of Hb cooperativity Crystallography shows oxyhemoglobin and deoxyhemoglobin differ in quaternary structure. - One αβ dimer is rotated relative to the second dimer. - Changes interactions at dimer interface between $\alpha_1\beta_1$ and $\alpha_2\beta_2$ oxy-Hb is R state; deoxy-Hb is T state ### O₂ binding changes the quarternary structure of Hb ## O₂ binding changes the quarternary structure of Hb Different view from~90° rotation about an axis in the plane of the slide ## O₂ binding changes the quarternary structure of Hb Different view from~90° rotation about an axis in the plane of the slide # Quarternary Change: how does O₂ binding induces it deoxy Hb: Fe has only 5 ligands and is out-of-plane oxy Hb: Fe has only 6 ligands and is in-plane ## **Quarternary Change** triggered by oxygen binding that allows Fe to move into heme plane drags proximal His in helix F and moves helix F - this alters FG loop (of one chain) C helix (another chain) interactions - changes are propogated to neighboring heme and increase affinity oxy Hb: Fe in plane alters proximal His Analogous to Fig 9.38, Devlin #### **Bohr Effect** Important in metabolizing tissues: CO_2 produced; leads to lower pH; reduces Hb affinity for O_2 . - Additional <u>regulation</u> of oxygen binding is from the Bohr Effect - → Increase in [H+] (lower pH) decreases oxygen affinity, i.e. stabilizes deoxy Hb $$\mathbf{Hb}^{\mathrm{T}} + \mathbf{4O}_{2} \Longrightarrow \mathbf{Hb}^{\mathrm{R}}(\mathbf{O}_{2})_{4} + \mathbf{nH}^{+}$$ $$increase$$ $$drives equil to left$$ by law of mass action #### Structural basis of Bohr effect - In deoxy-Hb, H146 forms salt bridge with D94. - In oxy-Hb, dimer rotation disrupts this interaction and H⁺ is released: - → pKa in deoxyHb > pKa in oxyHb $$Hb^{T}+4O, \longrightarrow Hb^{R}(O_{2})_{4}+nH^{+}$$ Deoxy-Hb Figure 9.30, Devlin #### Structural basis of Bohr effect pH changes are coupled to carbon dioxide levels: in erythrocytes, carbonic acid dissociates to bicarbonate and a proton: $$CO_2 + H_2O \xrightarrow{\text{carbonic anhydrase} \atop \text{anhydrase}} H_2CO_3 \xrightarrow{\text{spontaneous}} HCO_3^- + H^+$$ CO_2 produced in tissues is converted to HCO_3 which increases [H⁺] (i.e. decreases pH) and promotes deoxy form/oxygen release. HCO_3 is <u>transported in plasma</u> to lung, a process called isohydric transport, which accounts for ~80% of CO_2 transport to lungs. Deoxy-Hb Figure 9.30, Devlin ## Another Hb regulatory mechanism #### 2,3 bisphosphoglycerate (BPG) - Allosteric effector: binds at a site different from O_2 and modulates Hb function. Check out fix in Devlin - Effect is to change equilibrium for O_2 binding by lowering affinity, i.e. increasing P_{50} . - binds to one form of Hb (deoxy-HB, not oxy-HB) - Purpose: regulate binding under oxygen deficiency conditions. (Changes in BPG concentration occur over hours or days.) $$Hb^{T}(BPG)+4O_{2} \longrightarrow Hb^{R}(O_{2})_{4}+BPG$$ Hb was one of first targets for allosteric drugs #### Hb Variants - Over 800 mutant Hb have been characterized - Most are single amino acid substitutions - → Surface residues usually innocuous - → Internal residues destabilize the folded structure; carriers suffer from hemolytic anemia - \rightarrow Residues in heme binding pocket eliminate binding of O_2 - Changes in the α1β2 interface changes in cooperativity. If oxy form is stabilized then release in tissues is less than normal. T form could also be stabilized. - HbS, sickle-cell anemia - \rightarrow Substitution of $\beta6$ Glu, surface residue, by Val - Hb concentration is extremely high in red blood cells, nearly as dense as in a crystal - → E to V changes the surface and causes inter-deoxyHb binding, which leads to polymerization in RBCs # HbS, sickle-cell anemia Glu 6 in the beta chain is mutated to valine. This change allows the deoxygenated form of the hemoglobin to stick to each other, as seen in PDB entry 2hbs http://www.rcsb.org/pdb/101/motm.do?momID=41 # Summary of hemoglobín and cooperativity - 1.Hb transport function meets the physiological need to bind O_2 in lungs but release O_2 in tissue through several processes that affect the equilibrium between deoxy Hb^T and oxy Hb^R $(O_2)_4$ - 2. Positive cooperativity of O_2 binding derives from conformational changes, which propagate from the heme to certain tetrameric interfaces, and increases O_2 affinity - $3.O_2$ binding Hb is linked to CO_2 generation in tissues through pH (Bohr effect). This linkage leads to CO_2 transport opposite in direction to that of O_2 . - 4.O₂ binding affinity depends also on BPG concentration; BPG binds deoxy Hb and thus promotes release of O₂.