PHRM 836 August 27, 2015

Protein structure-function relationship: Recognition – example of immunoglobulins

Devlin, section 9.2

- 1. Overall structure of an antibody protein: quarternary and tertiary structure
- 2. Antibodies recognize antigen with high specificity
 - 1. Antibodies are therapeutic agents
- 3. Many proteins have an immunoglobulin fold

Protein Structure/Function: review

Amino acids

- a) Names of 20 common amino acids (3-letter and 1-letter abbreviations)
- b) Chemical structure and physical properties of each (polar, nonpolar, charged, pKa)
- c) Special structural features
 - i. Gly
 - ii. Pro
 - iii. Disulfide bond
- 2. Polypeptide chain
 - a) peptide bond
 - b) Phi, psi conformation (Ramachandran plot)
- 3. Protein structure
 - a) 4 levels of structure (primary, secondary, tertiary, quarternary)
 - b) Stabilizing forces of the folded state

Immunoglobulins: IgG antibody chains

(LH)₂ =two copies of a heavy & light chain

H: ~440 amino acids

L: ~220 amino acids

F_c region: binds and fixes complement and activates complement-mediated cytotoxicity

Immunoglobulin Domains

Devlin Figure 9.8

Chains: Heavy vs Light

Sequence conservation:
Constant vs Variable

Ig domain (~110 aa):
2 on L and 4 on H $V_L C_L V_H 3C_H$

Immunoglobulin Domains

Fall 2015, 27 Aug

Devlin

PHRM 836

Domains = Immunoglobulin Fold

The 110-amino acid domain

a "sandwich" of 2 antiparallel sheets

Disulfide bond links 2 sheets

Figure 9.4, Devlin

Fall 2015, 27 Aug PHRM 836

Immunoglobulin Fragments

Figure 9.8

Full Immunoglobulin G Antibody

Two light chains with $V_L \& C_L$

Two heavy chains with V_H & three C_H 's

Where does the hydrolysis producing Fab and Fc occur?

NOTE: the different relative position of Fab and Fc here compared to slide 5. This variation is common among antibody molecules.

Full Immunoglobulin G Antibody

Two light chains with $V_L \& C_L$

Two heavy chains with V_H & three C_H 's

Where does the hydrolysis producing Fab and Fc occur?

NOTE: the different relative position of Fab and Fc here compared to slide 5. This variation is common among antibody molecules.

9

Protein function: binding & molecular recognition

- The function of nearly all proteins, including antibodies, depends on binding other molecules, either small molecules or macromolecules.
- · Recognition is highly specific.
 - complementarity
- · Involves the formation of noncovalent interactions.
 - Such as what?
- Induced-fit structural changes occur to enhance specificity and complementarity

Protein function: binding & molecular recognition

- variable domains: comprise 3
 hypervariable loops
- loops vary in length and sequence for diff IgG's
- both the H and L chains compose the site
- "Exact" complementary match between antigen and loops.
 - high affinity (up to 10^{10} M^{-1})
 - induced fit
 - remarkable specificity (exploited in diagnostics and research)

Figure 9.7, Devlin

http://bcs.whfreeman.com/immunology6e/content/cat_030/epitope/start.html (text for part II and IV)

Protein function: binding & molecular

recognition

variable domains: comprise 3
 hypervariable loops

- loops vary in length and sequence for diff IgG's
- both the H and L chains compose the site
- "Exact" complementary match between antigen and loops.
 - high affinity (up to 10^{10} M^{-1})
 - · induced fit
 - remarkable specificity
 (exploited in diagnostics and research)

Figure 9.7, Devlin

Monoclonal antibodies in Pharmaceuticals

- Monoclonal: produced from a single Blymphocyte clone and bind the same epitope
- Fastest growing group of pharmaceutical molecules
- ~30 are FDA-approved for clinical use to treat cancer, inflammatory disease, infectious disease and cardiovascular disease (Liu, Dec 2014, Annals of Medicine and Surgery)

Therapeutic Antibody Mechanisms

- Targeting extracellular ligand-receptor interactions
 - Bind to ligand
 - Or, bind to receptor
 - Can lead to downregulation of receptor on cell surface
- Antigen binding affinity is key

Members of the Immunoglobulin Superfamily Have the Immunoglobulin Fold

Summary of Antibodies and Recognition

- 1. Two polypeptide chains fold into multiple domains, each domain being an immunoglobulin fold structure.
- 2. The basic immunoglobulin structure comprises two copies of each of the two polypeptide chains.
 - 1. Two immunoglobulin domains from each chain together form an FAB fragment
 - 2. The remaining two immunoglobulin domains from the heavy chains form an $F_{\mathcal{C}}$ fragment
- One antibody molecule has two identical antigen binding sites and can bind two antigens
- 4. The antigen-binding site of the V_L - V_H domain, generated by hypervariable loops, forms a continuous surface complementary to and specific for the antigenic determinant.
- 5. The strong interactions between antigen and antibody hypervariable loops are noncovalent and include van der Waals, hydrogen bonding, and hydrophobic interactions.