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ABSTRACT: Simulation methods are valuable for elucidating
protein conformational transitions between functionally
diverse states given that transition pathways are difficult to
capture experimentally. Nonetheless, specific computational
algorithms are required because of the high free energy
barriers between these different protein conformational states.
Adaptively biased path optimization (ABPO) is an unre-
strained, transition-path optimization method that works in a
reduced-variable space to construct an adaptive biasing
potential to aid convergence. ABPO was previously applied
using a coarse-grained Go̅-model to study conformational
activation of Lyn, a Src family tyrosine kinase. How effectively
ABPO can be applied at the higher resolution of an all-atom model to explore protein conformational transitions is not yet
known. Here, we report the all-atom conformational transition paths of three protein systems constructed using the ABPO
methodology. Two systems, triose phosphate isomerase and dihydrofolate reductase, undergo local flipping of a short loop that
promotes ligand binding. The third system, estrogen receptor α ligand binding domain, has a helix that adopts different
conformations when the protein is bound to an agonist or an antagonist. For each protein, distance-based or torsion-angle
reduced variables were identified from unbiased trajectories. ABPO was computed in this reduced variable space to obtain the
transition path between the two states. The all-atom ABPO is shown to successfully converge an optimal transition path for each
of the three systems.

■ INTRODUCTION

Conformational transitions are fundamental to the function of
many proteins,1−3 such as signaling proteins that convert
between enzymatically active and downregulated forms,
membrane proteins that transport molecules via open/closed
forms, and molecular machines that couple chemical energy to
molecular motion. Many conformational transitions are
between states with disparate functionality and are often
tightly regulated for proper control of cellular processes, which
highlights the importance of studying the transition processes.
Computational methods are valuable for elucidating such
transitions in atomistic detail not achievable by experimental
observation. Mechanistic insights and an understanding of
molecular recognition or regulation of enzymatic activity can
be gained from the knowledge of a free-energy surface or free-
energy profile along a pathway.
Most functionally interesting protein conformational tran-

sitions are activated processes, and the time scales are typically
longer than can be adequately sampled with current unbiased
molecular dynamics (MD) simulations. Enhanced sampling
methods are therefore required to overcome the free-energy
barriers that separate different protein conformational
states.4−6 Metadynamics,7−9 adaptive biasing force,10,11 mile-
stoning,12 and accelerated MD13 are some of the approaches

that utilize features of the transition to efficiently explore
relevant regions of the conformational space. Path-directed
approaches seek to specify the transition pathway between two
known states, A and B, using a series of images to define the
pathway through a space of a reduced set of variables.
Evolution to the optimal pathway in most cases involves
restrained sampling near each of the images. The finite
temperature string method,14 implemented with restraints in
orthogonal hyperplanes, or with swarms of trajectories,15 or
with umbrella sampling, underlies many of these techniques to
find the minimum free-energy path16 or maximum flux
transition path.17 Two other developments, both motivated
to allow greater exploration in the region of a path than
restrained sampling, define transition paths without use of
restraints to images along the path; on-the-path random-walk
simulation18 optimizes a path following the string formulation
and with metadynamics simulation, while another approach
introduces two path collective variables that define progress
along the path and distance to the path.19 The two path
variables are used with metadynamics to enhance sampling of
different basins on the free energy surface and are unlike path
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variables defined in terms of protein structural features. The
free energy surface is constructed as a function of the two path
variables,20,21 while path optimization is not an explicit
objective in this approach.
Adaptively biased path optimization (ABPO)22 is an

approach to optimize conformational transition pathways by
constructing the adaptive biasing potential introduced in ref 23
in terms of a one-dimensional path in a reduced-variable space.
The path is evolved with trajectories determined from the
gradient of the adaptively biased potential and without
restraints that localize the trajectories to the path. The path
is optimized according to the description of the finite
temperature string14,24 and proceeds iteratively by updating
the path variables according to the mean position of
trajectories in cross sections or hyperplanes orthogonal to
the path at the images. The ABPO methodology differs from
string methods by allowing unrestrained sampling along the
path rather than performing a linearly restrained path search.
An adaptively biased potential is constructed on-the-fly to
enhance the sampling along the path, without employing
restraints, which are thought to potentially impede con-
vergence or be difficult to sample.11,25 A “tube” potential is
used in ABPO to focus on configurations within a given radius
of the path;22,24 the tube potential is centered on the current
path and equal to zero within the tube radius to allow the
possibility of exploring multiple channels on the energy surface
and therefore restricts sampling only beyond the tube radius.
Because the tube potential is nonzero only beyond the radius,
it is less restrictive than the harmonic potential used in ref 18,
which imposes a penalty on all configurations any distance
from the path. Further, the ABPO approach does not require
the generation of initial structures at specified positions along
the path to initiate the computation as is needed by approaches
that utilize restrained images in discretizing the path. Such
initial structures could be unphysical and lead to instability or
poor convergence when trying to move the system to the
optimal pathway.

A first step of transition path optimization is to define the
reduced variables that adequately capture the structural
changes necessary and sufficient for the transition. We use
the term “reduced variable” to reflect the low dimensionality of
the space in which the pathway is determined rather than the
previously used term “collective variable”18,26,27 to avoid
inference of a collective motion being involved in optimizing
the transition. The simplification afforded by using a reduced
dimensionality for defining a path in a complex conformational
space has been appreciated for some time.28 Four types of
geometric reduced variables have been typically used: internal
distances7 or a linear combination29 thereof, angles,30 and
torsion angles.7,31 The choice of reduced variables is a critical
step for achieving a converged pathway but remains a
challenging step in practice.
ABPO was introduced22 using a Go̅-model32,33 and

applied22 to define the pathway for conformational activation
of Lyn kinase, a Src family protein tyrosine kinase. The Go̅
potential models a protein at the residue level with a single Cα
position representing each residue, compared with an all-atom
model, which includes greater than ten times more particles for
the protein molecule. An important result of this earlier study
was that the transition between down-regulated and activated
conformations of Lyn obtained by ABPO and the maximum
flux transition path (MFTP) method29 was mechanistically
similar. This direct comparison of the two computed pathways
determined independently, using different computational
approaches, gives confidence in the pathway. In addition,
convergence of the pathway was achieved using ABPO with a
4.5 times smaller computational cost, demonstrating the
efficiency of the ABPO method. Examination of the pathway
found that the conformational changes contributing to the
highest free-energy barrier were associated with the rotation of
helix C and thus provided a physical rationale for a large
number of structurally diverse, kinase regulatory complexes for
which the mechanism of the regulation was not always
apparent from the crystal structure alone.29

Figure 1. Conformational transitions of the three systems, illustrated in ribbon representation, are shown with opaque ribbon for the region of the
transition. Zoomed-in views of the transition regions are at the bottom. The residues in stick representation in the zoomed-in views have disparate
ϕ−ψ distributions in the two end states, as detailed in the results for each system. A: triose phosphate isomerase (TIM) transition of residues 166−
176, including loop 6. Cyan: open form, PDB ID 8TIM; orange: closed form, PDB ID 1TPH. B: dihydrofolate reductase (DHFR) transition of
residues 9−24, including Met20 loop. Cyan: open form, PDB ID 1RA2; orange: occluded form, PDB ID 1RX7. C: estrogen receptor α ligand
binding domain (ERα LBD) transition of residues 528−550, including helix 12. Helixes 4, 6, and 11 that interact with H12 are labeled. Cyan:
antagonist-bound form, PDB ID 3ERT; orange: agonist-bound form, PDB ID 1QKU.
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Here, the application of ABPO is extended to an all-atom
description of the protein systems. How well ABPO can
sample with the increased resolution and ruggedness of an all-
atom force field has not yet been reported. Exploration of a
higher resolution energy surface requires an appropriate choice
of reduced variables that define the transition pathway, and
ABPO provides a convenient framework to assess the ability of
these variables to bring about the transition. We examine
conformational transitions with biological relevance in three
protein systems (Figure 1): triose phosphate isomerase (TIM)
has a flexible loop that closes when the protein is bound to a
ligand;34 dihydrofolate reductase (DHFR) has a loop that can
adopt open and occluded forms in two states;35 and estrogen
receptor has a helix that adopts two distinct positions when the
protein is bound to an agonist or an antagonist.8,37 For each
system, torsion-angle-based or distance-based reduced varia-
bles were identified from equilibrium conformational averages
obtained from end-state trajectories. We discuss the choice of
reduced variables, which is a critical step for path sampling
methods. The ABPO path obtained from freely sampling
trajectories launched from the two end states is well converged.
Our results find that ABPO works efficiently to converge an
optimized transition pathway for the higher dimensional, all-
atom description of these protein systems. The all-atom
transition pathways for the three systems identified from the
simulations are described.

■ RESULTS AND DISCUSSION

ABPO Method. The ABPO methodology was developed
and described in detail in ref 22 and is summarized here.
ABPO uses an adaptive biasing potential in an iterative scheme
to evolve an initial path to the optimal principal path
connecting two predetermined stable states by following the
formula of the string method.14,24 The path is through a
reduced variable (RV) space and parametrized by ϕ(λ) with λ
varying from 0 to the total length of the curve. Multiple
trajectories are launched from each end state, and visits along a
path defined with initial RV values are accumulated for the
hyperplane orthogonal to the path at each λ value. In each
cycle of the computation, the path is evolved according to the
mean RV position of the trajectories associated with the
hyperplane16 or slice. An adaptive biasing potential23 is
constructed on the path to accelerate sampling along the
path through the reduced-dimensional space. There are no
restraints to localize trajectories to the path. The sampling is
further facilitated by computing multiple independent
trajectories in parallel (replicas) to determine the mean RV
position for a cycle.
ABPO accelerates the sampling in the region surrounding

the path by adding the bias potential Vb
23 at point λ on the

path. The bias potential, up to an arbitrary constant, is

λ λ=
−

[ − + ]V t k T
b

b
c b h t( , )

1
ln (1 ) ( , ) 1b B (1)

The histogram h(λ, t) counts visits to the region around λ
over time t, b is the fraction of the free energy that is flattened
by the bias, c controls how the bias couples to the dynamics
and has inverse time units, kB is the Boltzmann constant, and T
is temperature. The bias potential at λ increases with visits so
the region is “flooded” on the potential energy surface. It is the
gradient of Vb that is required to simulate the dynamics, while
the function in eq 1 is not computed. Although at long times
Vb diverges as log(t), the gradient of Vb is an ensemble average
and well converged. For details on the gradient of Vb and a
discussion of its convergence in the integration to propagate
trajectories, the reader is referred to refs 22 and 23, where it
was also shown that in the limit b → 1, eq 1 reduces to the
potential for standard metadynamics.23

The only positional restriction in ABPO is a one-sided
harmonic tube-wall potential to limit the sampling within a
tube-shaped space around the path. The tube potential is zero
within a distance, R, from at least one point on the path, and is
nonzero only for distances greater than R.22 The values for R
are listed in Table 1, and the effect of R on sampling efficiency
and the free energy, specifically entropy, along the pathway is
discussed in the Supporting Information.
Path optimization proceeds in a set of cycles to update the

position of the path and reparametrize ϕ(λ). Within each
cycle, the trajectories proceed in blocks. At the end of each
block, the histograms from all replicas are pooled together to
check if the combined sampling at each slice has reached a
preset minimum threshold. The cycle is terminated when the
threshold is reached, and the path is updated to the mean RV
position of the replica ensemble for each slice. The
accumulation for the histograms is unbounded and could be
problematic at extremely long simulation times; however, the
accumulation is over the time steps in one cycle and over all
replicas (∼1 × 106 steps, 16 replicas), which is less than ∼108
total counts for the full path. The double precision format used
in the CHARMM code easily accommodates much larger sized
histograms without overflow or inaccuracy. Another cycle is
started with reinitialized histograms, and cycles continued until
the path is converged based on the distance between the
current path and previous paths. At convergence, the path is
the principal curve through RV space connecting the two end
states.
The free energy for each slice, up to an additive constant, is

obtained from the converged path and the histograms that
contain only information for this final path. The PMF A(λ, t)23

at the principal curve is computed from the combined
histogram according to the following equation:

λ λ λ= −
−

[ [ ]]A t k T
b

h t h t( , )
1

1
ln ( , )/max ( , )B (2)

This approach to estimate free energy from the dynamics
accumulated with the bias potential (eq 2) was introduced
previously,23,38 where it was also shown that b specifies the
percentage of the free energy canceled by the bias potential
(A(λ,t) = −b−1Vb(λ,t)). Eq 2 limits b to values less than 1.0;

Table 1. ABPO Simulation Details for Each System

system no. of cycles no. of replicas time steps per block blocksa per cycle blocksb per cycle Rc path optimization time (ns)

TIM 50 4 20,000 2−3 1−2 0.2 15.84
DHFR 100 4 20,000 2−3 1−2 0.4 24.64
ERα LBD 70 16 30,000 25 7 10 989.76

aAt the beginning of ABPO. bNear convergence of ABPO. cTube radius.
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when b→ 1, A(λ,t) diverges. Similar divergence behavior exists
with metadynamics computation.39,40 ABPO implementations
have used b values of 0.8 to 0.9.22

Triose-Phosphate Isomerase (TIM) Loop Transition
Path. TIM is an enzyme in glycolysis that catalyzes the
reversible conversion of dihydroxyacetone phosphate to
glyceraldehyde 3-phosphate. Loop 6, a flexible loop that
contacts the active site (Figure 1A), is in a closed state when
TIM is bound with a ligand and in an open state on average in
the absence of ligand. The transition between closed and open
conformations is a key feature of the catalytic function of the
enzyme by allowing substrate access to the active site in the
open state while excluding water in the closed state.41−43 X-ray
crystallography has revealed different open conformations for
loop 6. One open conformation (PDB ID 1YPI)44 corresponds
to a rigid-body displacement of the closed loop, and a
description of the functional importance of loop dynamics
resulted from an early simulation study of the hinge-like loop
motion.45 A second open conformation adopts an alternative
loop structure (PDB ID 8TIM) that does not constitute a
rigid-loop displacement. Here we modeled the transition
pathway between the closed form and the second open form
using ABPO.
As for any path-transition computational method, a first step

is to identify RVs that capture the motion and are effective for
sampling the transition. A natural choice of reduced variables
for transitioning between open and closed positions of a short
loop is the main chain torsion angles, ϕ and ψ, that distinguish
the two forms. We defined the torsion angles ϕ and ψ from
simulating the open (PDB ID 8TIM) and closed (PDB ID
1TPH)34 forms of TIM shown in Figure 1A for 10 ns to obtain
the equilibrium distribution of ϕ−ψ torsion angle values for
the loop residues 166−176 at each end state. Only two
residues showed distinct ϕ−ψ distributions with less than 5%

overlap in the populations from the two forms (Figure 2A and
B). Based on these populations, we defined ψ of residue 170
and ϕ of residue 171 to be the reduced variables for the
transition pathway and set the end-state path values close to
the population average of the equilibrium distribution. The
other residues in the loop had overlapping dihedral angle
distributions in the two states (Figure S2) and were therefore
not selected to be a reduced variable.
To convey the structural nature of the transition, we note

that residues 170 and 171 are in the middle of the loop (Figure
1A) and not at the end of the loop as expected for a hinge-like
motion. Examining the ϕ−ψ plot, we find that the loop closes
by the two central residues acting as a single switch involving
rotations of the dihedrals flanking the intervening peptide
bond.
The initial path was set up as follows. The dihedral angle

values for ψ170 and ϕ171 at the two ends of the pathway were
set equal to the population average values (Table 2)
determined from the distributions generated with unbiased
simulations of the open and closed forms of TIM (Figure 2).
The initial transition path was a set of 200 linearly interpolated
points between each of the two end-state RV values. The

Figure 2. TIM transition path results from all-atom ABPO. A and B: Distributions of ϕ,ψ angles for residues 170 and 171 show distinct populations
in the open and closed forms of TIM. Each dot represents a frame in the 10 ns trajectory. Cyan: open form; orange: closed form. C and D:
normalized values for the two RVs at each slice (hyperplane) of the path evolving from cycle 1 to cycle 50. E: the two RVs of the ABPO calculation
plotted together for each cycle to show progress and convergence of the path optimization. F: A_RMSD (see Methods) of the path at each cycle
compared to the final path at cycle 50. The plateau near zero further demonstrates convergence of the simulation.

Table 2. Values in Degree for Torsion-Angle RVs Obtained
from the Close-to Average Structure of the MD Simulation
of the End States 1 and 2

parameter remarks

system TIM DHFR
torsion angle ψ170 ϕ171 ψ14 ψ18 ψ19
state 1 −50.1 −56.0 −7.6 169.0 119.6
state 2 117.4 76.0 133.1 −13.9 −31.0
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combined set with the two RVs defined the initial 200
hyperplanes perpendicular to the curve.
The ABPO computation was initiated with coordinates of

the ‘closest-to-average structure’ of the unbiased simulations,
defined by the minimum heavy-atom RMSD to the population-
average structure (see Methods). The closest-to-average
structure has ψ170 and ϕ171 values near the population
average values. Multiple trajectories were computed with
adaptive bias starting from the two end states as described
above and in Methods.
The ABPO approach generated a good transition path for

the loop motion of TIM. The effectiveness of the bias potential
(eq 1) constructed along a path specified by the two RVs,
ψ170 and ϕ171, is evident from the observation that the
unrestricted trajectories freely sample along the path; each
replica traverses nearly the full λ range (shown in Figure S7).
The evolution of the two RVs along the transition path
between the two states is shown in Figure 2C and 2D. From
these RV plots, the transitions of the two dihedral angles do
not occur simultaneously. Starting from the open state (slice 1)
and moving to the closed state (slice 200), the transition of
ϕ171 occurs first, followed by the ψ170 transition to complete
the transition. How the two RVs of the transition path evolve
together from the first cycle to the final cycle can be seen in the
two-dimensional RV plot (Figure 2E). Based on the RV
evolution along the pathway, it is concluded the optimization
converged quickly after about 15 cycles. To further examine
convergence of the ABPO results, we compared the path at
each cycle to the final path from cycle 50 by evaluating
A_RMSD (see Methods). The results are shown in Figure 2F
as a function of cycle index. The plateau with values near zero
after 15 cycles further establishes good convergence of the
path. The path PMF (eq 2) from the final cycle reflects the
rotation of the two dihedral angles and has two low free-energy
barriers equal to ∼2.5 and ∼1.5 kcal/mol, respectively (Figure
S8A), which is consistent with the short convergence time.

Dihydrofolate Reductase (DHFR) Loop Transition
Path. DHFR is an enzyme that reduces dihydrofolate to
tetrahydrofolate. The Met20 loop adjacent to the active site is
highly flexible (Figure 1B)46 and immobilizes NADPH to
promote the transfer of hydride from NADPH to dihydrofo-
late. Three Met20 loop conformations have been observed in
various crystal structures, distinguished depending on if the
active site is open, closed, or occluded by the loop.35 Met20
loop conformational flexibility is closely linked to the function
of the enzyme given its alternating positions that either occlude
or stabilize NADPH in the active site.46 Here we study the
transition between the open and occluded states, which is the
largest conformational transition among the three states.
As in the case of TIM, the structural difference between the

two states of DHFR is localized to the position of a short loop
(residues 14 to 19, Figure 1B), and therefore we looked to
define main chain dihedral angle RVs for the DHFR
conformational transition. Reasoning that the backbone
torsion angle RVs should be good descriptors of the localized
loop transition is sound; however, the selection of angles was
not as straightforward as for the TIM loop.
The main chain dihedral angle populations from unbiased

MD simulations of DHFR with the Met20 loop in the open
and occluded forms were compared to identify RVs for the
ABPO computation. The populations differed for residues
14,15 and 18,19 at the ends of the loop (Figure 3A), as
anticipated for a hinge-like motion and in contrast to the TIM
loop. On the criterion of having distinct populations in ϕ or ψ
with essentially no overlap along the given dimension, we first
selected four RVs to conduct the ABPO calculation: ψ14, ϕ15,
ψ18, and ψ19. The ABPO pathway converged; however, the
path that was generated did not include rotation of ψ14 and
ϕ15. That this set of four RVs did not properly describe the
transition is readily apparent from RV values plotted along the
path (shown in Supporting Information, Figure S4). To find
better RVs, we reasoned that including both ψ14 and ϕ15

Figure 3. DHFR transition path results from all-atom ABPO. A: distributions of ϕ,ψ backbone angles for the four residues with largely distinct
populations in the open (cyan) and occluded (orange) states. B. A_RMSD of the path at each cycle compared to the final path at cycle 100. C-E:
evolution of the path during the ABPO computation showing the normalized value for the three RVs at each slice (hyperplane) of the path from
cycle 1 to cycle 100. The tight overlap of the paths indicates convergence of the optimization.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00147
J. Chem. Theory Comput. 2018, 14, 5372−5382

5376

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00147
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jctc.8b00147&iName=master.img-003.jpg&w=460&h=236


could be problematic because they both act on the same
peptide group connecting residue 14 and 15. We therefore
removed ϕ15 as an RV and used only three RVs: ψ14, ψ18,
and ψ19. (Other sets of RVs, including both more and fewer
RVs, were also explored, and the results are detailed in the
Supporting Information.) The bias potential constructed on
these three RVs generated an optimal path with the expected
complete transitions of ψ14, ψ18, and ψ19 over the course of
the pathway (Figure 3C-E).
In the RV plots from the open to the occluded state, the ψ14

transition starts early, then the ψ19 transition initiates around
slice 200 of the path, while the ψ18 transition is a continuous
process that traverses the whole path. The good convergence
of the path optimization is shown by the tight overlap of the
final cycles (purple, Figure 3C-E) and further described by the
A_RMSD against the final path (Figure 3B). From the plot,
the optimization converged after about 50 cycles, taking almost
twice the computation time compared with TIM (Table 1).
Further, as with the TIM loop transition computation, the
ABPO trajectories sample nearly the full length of the path
given the bias potential and unrestrained sampling; plots of the
position λ as a function of time for the replicate trajectories are
given in Figure S7.
To determine if in the three-RV case of ABPO all five

dihedral angles identified in the ϕ−ψ plots (ψ14, ϕ15, ψ15,
ψ18, and ψ19) actually transitioned between both end-state
populations shown in Figure 3, we extracted the time series for
the five dihedral angles from the final ABPO cycle. We found
from the time series (Figure S5) that even though only three of
the five torsion angles, ψ14, ψ18, and ψ19, were used to bias
sampling, the two unbiased dihedral angles, ϕ15 and ψ15, also
transition given that the time series includes angle values
intermediate to the two end-state values. This result testifies
that adaptive biasing in the space of the three RVs can properly
determine the complete transition process including features
that are not part of the RVs.
The PMF (eq 2) was computed for the optimized DHFR

transition path, and the result is shown in Figure S8B. There is
a single free-energy barrier of ∼2.5 kcal/mol, and the occluded
loop conformation is favored relative to the open form by ∼1.5
kcal/mol. The higher free energy of the open form is consistent
with NMR in that only the occluded and closed M20 loop
conformations are observed in solution.47 The barrier height is
similar to what was reported for a one-dimensional free energy
profile computed with umbrella sampling,48 although that
study found the open conformation to be thermodynamically
favored over the occluded one.
Estrogen Receptor α Ligand Binding Domain (ERα

LBD) Helix 12 Transition Path. ERα is a member of the
nuclear receptor (NR) superfamily. Dysregulation of NR
signaling often results in diseases such as cancer, diabetes,
infertility, and obesity. Specifically, ERα overexpression is often
identified in breast cancer, and various studies have established
ERα as one of the therapeutic targets in breast cancer.49,50

The NR superfamily structure comprises three domains, and
the ligand-binding domain (LBD) is the focus of our study.
The NR LBD structure is highly conserved with 11 α-helices
packing into a three-layer sandwich motif (Figure 1C). In ERα
LBD, only helix 12, H12, on the C-terminus is highly dynamic.
H12 is an essential element in ERα function by serving as a

gate to regulate the binding of coactivators.51 When LBD is
bound to an agonist, the H12 gate is positioned to form the
coregulatory surface that binds coactivators to activate

downstream signaling for gene transcription. When LBD is
bound to an antagonist, H12 adopts a new conformation and is
positioned in the coactivator binding site, prohibiting the
activation of the receptor.51 NMR studies52−54 show that the
unligated forms of NR LBDs are conformationally dynamic,
and the motions of LBD occur on a ms time scale.
We applied ABPO to examine the transition of H12 between

the agonist and antagonist-bound forms. The actual time scale
specific to the H12 transition is unknown, although the NMR
studies suggest a longer time scale (ms) than associated with
localized loop transitions. To better understand the dynamics
of H12 in ERα LBD, we computed unbiased MD simulations
for 6.2 μs of each of the two structures. No transition-like
conformational changes were observed in the long simulations,
and the position of the H12 on the surface of ERα LBD is
stable over low μs time scales (Figure S9). These MD results
combined with NMR suggest that H12 displacement is
unlikely to occur within the time frame of simulations possible
with currently available resources, so that to explore the
transition details it is necessary to use enhanced methods, such
as ABPO.
Alternative variables were explored to define the RVs for

computing the transition between the two states of ERα LBD.
First, we examined the backbone dihedral angles as RVs. In
contrast to the loop transitions in TIM and DHFR, the
transition in ERα LBD is a helix movement. In the agonist-
bound form (called agER LBD hereafter), H12 (residues 537−
543) interacts with H11 and the N-terminus of H4; in the
antagonist bound form (called atER LBD hereafter), H12
interacts with H6 and the C-terminus of H4 (Figure 1C). We
extracted the ϕ−ψ time series of the residues 526−545 from
10 ns simulations using the crystal structures to obtain the
ϕ−ψ distributions for atER LBD (PDB ID 3ERT)37 and agER
LBD (PDB ID 1QKU).36 These residues include the coil
region connecting H12 and H11. Only four residues, located at
either end of the coil N-terminal to H12, had distinct ϕ−ψ
distributions (Figure S10). Based on the distributions, five
dihedral angle RVs were defined: ϕ532, ψ532, ψ533, ψ536, and
ψ537. The ABPO simulation converged within 30 cycles based
on the tight overlap of the evolution of the normalized RV
values along the path. Nevertheless, examination of the
structures at the computed end states of the path found that
the dihedral rotation of the torsion angles RVs was achieved by
residue movements localized to the coil without reposition of
H12 on the surface of the protein. Based on this observation,
we concluded that dihedral RVs were insufficient for
transitions involving helix contacts and movements more
complex than loop motions.
Distance-based RVs were therefore explored with the

rationale that inclusion of the H12 contacts with other ERα
LBD residues is needed to capture the essential structure
features of the transition. The RVs chosen are a linear
combination of multiple inter-residue distances.29 The
procedure to obtain a linear combination of multiple inter-
residue distances to define RVs for the ERα LBD transition
was as follows. We ran a 10 ns simulation of the two end
structures and calculated the closest-to-average structure for
each system from the last 4 ns of the trajectories as described
in Methods. For each structure, we identified the residue pairs
that had side chain heavy atoms within 4.5 Å of each other and
compared the residue pairs from the two structures to
determine Cα-Cα distances that differed by more than 1 Å
in the two structures. These residue pairs were grouped based

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00147
J. Chem. Theory Comput. 2018, 14, 5372−5382

5377

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00147/suppl_file/ct8b00147_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00147


on their spatial proximity, and the individual Cα-Cα distances
for each residue pair within a group were combined linearly
using eq 3 in Methods to define an RV. In general, the pairs
between one residue on H12 and other residues outside H12
are grouped into the same RV. The distance values for the RVs
were extracted from the two closest-to-average structures, and
the RVs comprise only Cα-Cα distances with no side chain

distances involved. For the transition in ERα LBD, we first
defined nine combined-distance RVs, but two of them were
eliminated due to “high noise” or large fluctuations on the
normalized RV path evolution plots, indicating the RVs are not
effective for promoting the transition. The final ABPO
calculation included seven combined-distance RVs. A list of
the residue pairs is in Table S1. The location of the residues in

Figure 4. ERα LBD ABPO results. A to G: evolution of the normalized value for the seven Cα-Cα-distance RVs (see Table S1 for a list of residues)
shows convergence. H agERα LBD and I atERα LBD closest-to-average structures from the equilibrium simulation: residues in each RV are colored
differently to show their locations. From RV1 to RV7, each RV is colored 1) blue, 2) red, 3) green, 4) black, 5) pink, 6) yellow, and 7) cyan.

Figure 5. An intermediate state structure in the ERα LBD transition path from agERα LBD to atERα LBD. A: PMF along the transition path from
the final ABPO cycle shows one major free-energy barrier. The minimum number of visits to each slice was set to 100. B: a snapshot at the free-
energy barrier, where, in the transition from agERα LBD to atERα LBD, the interactions of H12 with H11 are broken and the interactions of H12
with H4 have not formed. H12 is in opaque ribbon representation. In agERα LBD, L544 interacts with M522, while in atERα LBD, L544 interacts
with K362.
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the seven RVs is shown in Figure 4H−I where the residue pairs
in one RV have the same color and each RV color is unique.
The progression of the seven combined-distance RVs is

shown in Figure 4. Although less cycles were used, the
optimization in fact took much longer to converge compared
with the previous two systems. For the previous two systems,
only 3 blocks per cycle were needed; in ERα LBD, the
simulation reached the specified maximum of 25 blocks per
cycle at the beginning of the optimization (Table 1), which
indicates the bias potential did not adapt sufficiently in the
allotted simulation time for the initial cycles to promote
complete sampling of the path. Nevertheless, the changes in
the path variables from the initial guess were sufficient enough
to achieve convergence to the principal curve in the
subsequent cycles.
The PMF computed from the principal curve for the ERα

LBD transition is shown in Figure 5A. The choice for the tube
width, R, used to compute the trajectories that determine
h(λ,t) to estimate A(λ,t) (eq 2) must be larger than the
reaction channel in order to accurately capture the entropic
contribution to the free energy. The PMF is roughly invariant
to the R values used (results shown in Figure S11), so the
entropic component is reasonably accounted for in the PMF
shown in Figure 5A. In addition, the results in Figure S11
include a second round of accumulating histograms with the
same optimized path as Figure 5A and with R equal to 10 Å.
The similarity in the plots demonstrates reasonable certainty in
the estimates for the PMF.
The transition path has a maximum free-energy near 0.4 of

the path total length (Figure 5A), which likely is the reason for
the more slowly converging optimization of this transition
path. Although the barrier height seems high given the time
scale of the motion estimated from NMR,52−54 it is useful to
examine the mechanism of the transition. By looking at the
principal curve for each RV (Figure 4), RV3 and RV4 plateau
near the same slice index as the free energy barrier, followed by
a rapid change. RV3 and RV4 together describe the switching
of the position of H12; RV3 and RV4 distances are the
contacts between H12 and the two helices, H4 and H6,
respectively. Based on this behavior of RV3 and RV4, the
breaking and reforming of the interactions of H12 with H4 and
H6 are suggested to be a key step in the transition.
A minimum in the PMF falls near slice 700, rather than near

the end-state slice 1000, where the RV values are defined from
the crystallographic structure (Figure 5A). The reduced
coordinates that vary between slice 700 and 1000 are RV1,
RV2, and RV3 (Figure 4A-C), which correspond to displace-
ment of the flexible loop between H12 and H11. Further, the
normalized value of RV1 extends to almost 2, i.e. RV1 values
beyond those of the atER LBD end state. The shift of the free-
energy minimum and the extended values of RV1 could occur
as a result of the flexibility of the loop. That is, if the
conformational fluctuations of the loop differ in solution
compared to the conformational space accessible in the crystal,
a shift in the position of the free-energy minimum could occur.
Alternatively, the implicit-solvent simulations may not properly
account for the conformational equilibrium of this solvent-
exposed loop,55 which could also give rise to the observed
displacement of the minimum.
We extracted structures along the principal curve from the

trajectories of the final cycle of the ABPO simulation to
visualize the transition pathway. A frame for each slice was
used to construct a structure series showing the transition from

agER LBD to atER LBD. The structure series showed some
clear features in this process: from agER LBD to atER LBD,
the N-terminus of H12 breaks interaction with the N-terminus
of H4, then the H12 C-terminus interaction with H11 is lost,
so that H12 is more solvated. Gradually the C-terminus of H12
forms alternative interactions with H4 C-terminus and H12 N-
terminus with H6. In structures extracted at the transition state
of the PMF, H12 contacts neither H4, H6, nor H11. A
representative structure near the transition state is shown in
Figure 5B.

■ CONCLUSION

In conclusion, ABPO is demonstrated here to be an effective
method to optimize conformational transition paths of three
protein systems using an all-atom force field. The path evolves
efficiently from a starting path to the final converged path
under the forces of the adaptive bias potential (eq 1). A
highlight of ABPO is the free sampling in a tube around the
path, which allows exploring multiple channels within the tube
radius and also the quality of the RVs to be readily assessed
based on the ability of trajectories to traverse the path and
describe the expected transition. In addition, the ABPO
formalism provides a straightforward evaluation of the PMF.
We expanded the application of the unrestrained ABPO

approach from the coarse-grained Go̅ model22 to all-atom
protein conformational transitions and found the bias potential
to be effective at enhancing the sampling along pathways
specified in reduced-variables in the higher resolution space
and more rugged potential surface of an atomistic protein
model. The trajectories, localized by a tube potential to a
region of the path within the tube radius but otherwise not
restrained to the path, freely sample the path and showed good
convergence to the final optimized curve. Compared to Go̅
models with only Cα atoms represented, the all-atom model
allows RVs to be in terms of main chain dihedral angles for
motions localized to two sequential residues, which is
convenient for exploring loop transitions.
The unrestricted sampling of ABPO was effective for moving

the path from the initial guess, which is not only important for
converging to an optimal path but also allows for efficient
exploration in the choice of select RVs that capture the features
of the motion. In the case of the switch in the H12 position in
ERα LBD, RVs derived from a linear combination of Cα-Cα
distances that differed in the end states were found effective,
while dihedral angles were not; and, it was not necessary to
include side-chain atom distances as the side chains moved
with the main chain in the ABPO trajectories.
The transition-pathway computations from the three

systems validate ABPO as an efficient method to calculate
protein conformational transitions. The path computed with
the ABPO approach for the DHFR loop included rotations of
dihedral angles that were not specified as RVs, which speaks to
the reliability of the approach.

■ METHODS

Molecular Dynamics Simulation Details. Three sys-
tems, each in two states, are from the PDB entries 8TIM,
1TPH, 1RA2, 1RX7, 1QKU, and 3ERT. Missing atoms,
including all hydrogens atoms, were added to the set of
coordinates retrieved from the PDB using the IC BUILD
facility of CHARMM.56 All crystal water molecules and ligands
were removed. Simulations of the proteins were carried out
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using the CHARMM22 all-atom force field with CMAP
dihedral angle corrections.57,58 Unless stated otherwise, the
solvent was modeled by the implicit solvent model FACTS.59

It has been established that the structure and dynamics of
single-domain, globular proteins are accurately reproduced
with FACTS by comparison with explicit water TIP3P.55 As
the preparation steps for ABPO, we first performed energy
minimization on the two structures for the end states of the
transition. The energy was minimized using the steepest
descent and Powell algorithms to a gradient less than 1.0 in the
following stages: 1) with the position of protein heavy atoms
fixed, 2) with harmonic restraints on protein heavy atoms, 3)
with harmonic restraints on protein backbone (N, C, Cα)
atoms, and 4) without restraints.
The energy-minimized structures were heated from 100 to

300 K and equilibrated at 300 K over a total period of 500 ps.
The initial velocities were generated from Gaussian distribu-
tions at the specified temperature. The leapfrog integrator was
used to calculate the trajectories with a 2 fs time step.
A 10 ns simulation was initiated using coordinates from the

equilibration run and Langevin dynamics with a temperature of
300 K, with long-range interactions cutoff distances set to 10,
12, and 14 Å. Coordinates were saved every 2 ps. The time
series of temperature, potential energy, and heavy atom RMSD
with respect to the energy-minimized structure was monitored
to assess the simulations were stable.
A “closest-to-average structure” is a frame taken from the

trajectory in place of a structure generated from the statistically
averaged coordinates, which are often unphysical even after
energy minimization. The closest-to-average structure was
generated from the last 4 ns of the trajectories and used to
define the distance RVs, to set values for the RVs at the end
states and initiate the ABPO simulations. The coordinates
averaged over the last 4 ns of the unbiased MD were compared
to coordinates of each frame. The frame with the minimum
heavy-atom RMSD with respect to the average structure was
extracted from the trajectory as the closest-to-average
structure.
ABPO Calculation. The transition pathways were

computed using the ABPO module in CHARMM. ABPO is
an implementation of the path optimization and calculation of
path free energy based on the bias potential in eq 1 and its
gradient.22 The number of replicas, the tube radius, the
number of blocks per cycle, time steps per block, number of
cycles, and total simulation time for each system are
summarized in Table 1. In all simulations, a time step of 2 fs
was used. Langevin dynamics was used with a temperature of
300 K. From eq 1, the fraction of the free energy canceled by
the bias potential, b, was 0.8, and the coupling of the bias to
the dynamics, c, was 2.5 t−1. The histograms for visits to path
slices are smoothed using a Gaussian mollification factor set to
0.05. The mollification was done using eq 18 in ref 22. The
number of slices is indicated in the plots for each path. The
parameter values for the radius and force constant in the tube-
wall potential22 were chosen to enable efficient sampling;
transition paths with more complex RVs require a larger radius.
For the paths specified by dihedral RVs, the tube radius was
0.2 and 0.4 rad, and the force constant was 15 and 5 kcal/mol
for TIM and DHFR transitions, respectively. For the distance-
based RVs of ERα LBD, the tube radius was 10 Å, and the
force constant was 5 kcal/mol/Å2. Reference 22 provides
guidance for setting ABPO parameters.

Here, the initial paths were discretized to a set of linearly
interpolated points between the two end-state values of the
RVs. The end-state values were set equal to the population
average from the distributions obtained in an unbiased
simulation of the two known forms of the protein. The
number in the set, or number of slices, varied depending on the
complexity of the transition path. Initial coordinates to launch
ABPO for path optimization are needed only for the end
states; no coordinate sets are required at intermediate points of
the path. The closest-to-average structure from the unbiased
simulations was used for end-state initial coordinates to start
multiple trajectories running in parallel to accumulate sampling
information to adapt the bias potential (eq 1).
The string description16 followed here to evolve and

optimize the path includes a metric tensor, D, with the
dimension of a diffusion coefficient. D was evaluated with eq 2
in ref 22. The average values for the elements were estimated
from short unbiased simulations at each end state, and the
inverse of D was stored for input to ABPO optimization and
free energy evaluation. For TIM and DHFR, D was evaluated
from unbiased simulations over 100 ps with a 2 fs time step.
For ERα LBD, D was evaluated from unbiased simulations
over 2 ns with a 2 fs time step. Most elements differed by less
than 10% in value for the two end states, although some
elements of D computed from the two end states differed by as
much as 20%−30%. A path-dependent estimate of D can be
considered in future ABPO implementations.

Distance Combination RVs. A combination of individual
interatom distances29 was calculated using eq 3. For a distance
combination RV with n individual interatom distances, Z is the
combined value, and rj

state is the interatom distance of residue
pair j in the state.

∑=
−

| − |=

Z
r r

r r
r

j

n
j
state

j
state

j
state

j
state j

1

1 2

1 2
(3)

For all simulations, a time step of 2 fs was used. Langevin
dynamics was used with a temperature of 300 K. The
simulation details for each system are summarized in Table 1.

Analysis. A_RMSD. To validate convergence in ABPO, we
define A_RMSD as follows:
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In this equation, N is the number of RVs, n is the number of
slices, Cycleij

num is the RV value for the ith RV on the jth slice at
the end of the cycle num. Cycleij

last is the RV value for the ith RV
on the jth slice from the last cycle. If there are S cycles in total,
we compare the RV values of the last cycle (S) to the previous
cycles (1 to S-1) and calculate A_RMSD for each point 1 to S-
1 and plot the data. The curve should first decrease and go flat
at convergence.

Normalized RV. We used eq 5 to calculate the normalized
RV value for a RV for each slice along the path. For each RV,
RVstate1 and RVstate2 are the RV values for the two end-states,
respectively, while RVi is the value on the ith slice.
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