1 Standards

1.1 Motor specifications shall be based on the following standards.

- Be wound with inverter spike resistant copper wire rated at a minimum of 2000 volt CIV (Corona Inception Voltage Capability), with Class H insulating components.
- Have a precision balanced rotor of 0.0003" peak to peak.
- Have cast iron frames with grounding lugs
- Be totally enclosed fan cooled
- Have shaft slingers on the drive end of the motor
- Use grease-able bearings with Mobil Polyrex or EM equivalent grease. Note: Each motor shall have a factory tag applied identifying what type of grease was installed at the factory.
- Have specified proper alignment
- An minimum insulation rating of Class F with a maximum Class B temperature rise at 1.15 Service Factor
- For motors controlled by VFD’s. Be coordinated and rated for VFD use to prevent premature failure
- For motors controlled by VFD’s, the motor rotors shall be grounded with a manufacturer’s supplied ground kit (e.g. AEGIS SGR Bearing protection kits).
- Meet or exceed NEMA MG31 Part 1 for inverter duty motors.
- For all motors, motor frame, rotor, windings and bearings shall be warranted for three (3 years) years, on PWM power, against manufacturers defect.
- Belted Designs for motors 404T frame and up and will utilize Roller bearings.

2 Horsepower, Voltage and Phases

2.1 Motors ≤ 1/2 Hp can be single phase, 120 volt AC.

2.2 Motors > 1/2 Hp should be three phase AC.

2.3 The three phase voltage shall be selected dependent on building power availability.

2.4 Single phase 240VAC motors should only be used when replacing equipment already serviced with this voltage or when it is the only available service voltage in the building.

Exception: Direct drive blower motors one half horsepower and less than can be single phase, 120 volt AC.

3 Efficiency

3.1 Design and specify motors that are labeled with a NEMA Premium label.

4 Preferred Speed, RPM

4.1 Standard motor speed is 1800 RPM.

Exception: Special speed motors can be used if reviewed and approved by the University engineers.

5 Motor Starter Controls and Variable Frequency Drives

5.1 Provide a motor starter control diagram for each motor.

Note: Control Function tables or columns in the Mechanical Equipment schedule sheets are not acceptable in lieu of the control diagrams.

5.2 Include all functions specified for the VFD control panel in the control diagram, including the manual start stop function.

6 Motor Nameplate Voltage Table

<table>
<thead>
<tr>
<th>Nominal System Voltage</th>
<th>Motor Nameplate Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>200</td>
</tr>
<tr>
<td>240</td>
<td>230*</td>
</tr>
<tr>
<td>480</td>
<td>460*</td>
</tr>
</tbody>
</table>

* Dual rated Motors – 230/460