When worlds collide: Studying impact craters to uncover the secrets of the solar system

Brandon Johnson, an expert in impact crater dynamics, surrounded by some of his favorite research subjects: Mercury, Mars and the moon. (Purdue University photo/Rebecca McElhoe)

WEST LAFAYETTE, Ind. —

While for humans the constants might be death and taxes, for planets the constants are gravity and collisions.

Brandon Johnson studies the latter, using information about impacts to understand the history and the composition of planets, moons, asteroids and meteorites throughout the solar system.

“Impact cratering is the most ubiquitous surface process shaping planetary bodies,” Johnson said. “Craters are found on almost every solid body we’ve ever seen. They are a major driver of change in planetary bodies. They drive the evolution of planetary crusts. All the planets and asteroids were built from a series of impacts. Studying impacts can help us determine the composition and structure of planets.”

As an associate professor in the Department of Earth, Atmospheric, and Planetary Sciences in Purdue University’s College of Science, Johnson has studied almost every major planetary body in the solar system. And the time scale of his research ranges from relatively recent impacts to nearly the beginning of the solar system itself.

Collecting clues about collisions helps Johnson reconstruct the environment in which the collisions took place, offering deep insights into how and when bodies formed. His research is helping humans explore the planetary bodies in the solar system with only physics, math and a computer. Space missions and laboratory analyses provide a constant supply of new data and questions to work on.

“Most meteorites contain chondrules — small, previously molten, particles,” Johnson said. “Essentially, by studying the formation of chondrules by impacts, we can better understand what was going on in the nascent solar system. For example, based on one impact, we were able to determine that Jupiter had already formed right around 5 million years after the first solar system solids, changing the timeline of our understanding of the solar system.”

Johnson and his lab staff incorporate known factors about the composition and physics of planetary bodies into complex computer models, running the models through a range of conditions and comparing the results with observed phenomena. Analyzing movements and collisions can offer insights into the composition of asteroids and meteorites, helping scientists understand how elements like water and metal are distributed through a solar system. By studying impact craters and basins on places like Pluto, Venus and icy moons, and the mechanics of other processes occurring on Europa and asteroids like Psyche, his team can understand more about their interiors; whether they have molten cores and plate tectonics, for example, or whether they have liquid oceans.

His work doesn’t just span the solar system. He studies impacts closer to home, too, including on Earth’s own moon and terrestrial impacts that may have affected the way Earth’s crust, atmosphere and biosphere evolved.

An online impact calculator tool developed by the late Jay Melosh, Johnson’s mentor and former Distinguished Professor of Earth, Atmospheric and Planetary Sciences, allows anyone to study the impacts of various rocks into the Earth. Johnson and his team are rebuilding the tool for a new generation of planetary students.

About Purdue University

Purdue University is a top public research institution developing practical solutions to today’s toughest challenges. Ranked in each of the last four years as one of the 10 Most Innovative universities in the United States by U.S. News & World Report, Purdue delivers world-changing research and out-of-this-world discovery. Committed to hands-on and online, real-world learning, Purdue offers a transformative education to all. Committed to affordability and accessibility, Purdue has frozen tuition and most fees at 2012-13 levels, enabling more students than ever to graduate debt-free. See how Purdue never stops in the persistent pursuit of the next giant leap at https://stories.purdue.edu.­­

Media contact: Brittany Steff, bsteff@purdue.edu
Source: Brandon C. Johnson, bcjohnson@purdue.edu

Note to journalists:

Visitors to campus should follow standards set in Protect Purdue guidelines.

Research News

Purdue professor Briony Horgan stands in front of a photo of the Mars Perseverance rover.

Purdue scientist expecting new world to reveal itself to Mars rover  

December 3, 2024

Portrait of Luna Lu with trees in the background.

Luna Lu appointed vice president of Office of Industry Partnerships

November 25, 2024

Mung Chiang and Todd Younkin

U.S. Department of Commerce awards $285M Manufacturing USA Institute to SRC-led consortium with Purdue as lead academic institution

November 19, 2024

Richard Kuhn

The key to fighting viruses: Understanding their structure is vital to unlock a healthy future for humanity

November 18, 2024