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Abstract 

Abscisic acid (ABA) is an important phytohormone regulating plant growth, 

development and stress responses. It has an essential role in multiple physiological 

processes of plants, such as stomatal closure, cuticular wax accumulation, leaf 

senescence, bud dormancy, seed germination, osmotic regulation and growth 

inhibition among many others. ABA controls downstream responses to abiotic and 

biotic environmental changes through both transcriptional and posttranscriptional 

mechanisms. During the past twenty years, the ABA biosynthesis and many of its 

signaling pathways have been well characterized. Here we review the dynamics of 

ABA metabolic pools and signaling that affects many of its physiological functions.  

INTRODUCTION 

ABA is the hormone that is usually associated with major plant responses to 

stress. Pioneering studies by Hemberg found a water and ether soluble 

growth-inhibiting substance that is critical for the maintenance of bud dormancy in 

potato and Fraxinus (Hemberg 1949a,1949b). This growth inhibitor was isolated in 

buds of Acer pseudoplatanus by Philip Wareing in 1963, and named dormin (Eagles 

and Wareing 1963). During the same period a substance that controlled abscission of 

cotton fruits was discovered by Frederick Addicott and named abscisin II (Ohkuma et 

al. 1963). The Addicott lab found that abscisin II also promotes leaf abscission in 

cotton seedlings and inhibits indoleacetic acid induced growth of Avena coleoptiles. 

Later, dormin and abscisin II were found to be the same chemical compound and 

named as abscisic acid (Cornforth et al. 1965; Addicott et al. 1968). Although the 

abscission-promotion role of ABA was considered by many to be an indirect effect of 

the elevated level of ethylene (Cracker and Abeles 1969), recent studies have 
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demonstrated that ABA promotes leaf senescence and abscission independent of 

ethylene (Ogawa et al. 2009; Zhao et al. 2016).  

Over the past 40 years, the core components of ABA biosynthesis and signaling 

have been identified through molecular-genetic, biochemical and pharmacological 

approaches. Genetic screens for viviparous mutants in maize and Arabidopsis, and for 

mutants that are insensitive to sugar, salt and ABA during germination lead to the 

identification of numerous components involved in ABA biosynthesis and signaling. 

Some of the first identified were the clade A PP2Cs such as ABA Insensitive (ABI) 1 

and ABI2, and the core transcription factors ABI3, ABI4 and ABI5 (Koornneef et al. 

1984; Giraudat et al. 1992; Finkelstein 1994; Leung et al. 1994; Meyer et al. 1994; 

McCarty 1995; Leung et al. 1997; Rodriguez et al. 1998; Finkelstein and Lynch 2000; 

Laby et al. 2000; Gonzalez-Guzman et al. 2002). Biochemical studies of the ABA 

activation of protein kinases resulted in the identification of AAPK, which is a 

homolog of the core protein kinases, SnRK2s in Vicia faba (Li and Assmann 1996). 

Due to its high functional redundancy, the ABA receptor Pyrabactin resistance 1 

(PYR1) and PYR1-like (PYL) proteins (hereafter referred to as PYLs) were not 

revealed until 2009 by Sean Cutler and co-workers through chemical genetic screens 

for mutants that are insensitive to the ABA analog pyrabactin (Park et al. 2009). In 

the meantime, regulatory components of the ABA receptors (RCARs) were isolated 

through yeast two-hybrid screens in the Erwin Grill lab (Ma et al. 2009). The identity 

of the proteins of PYL/RCAR family was also demonstrated by in vitro reconstitution 

of the core ABA signaling pathway (Fujii et al. 2009), and later further confirmed by 

substantial genetic and structural evidence (Melcher et al. 2009; Miyazono et al. 

2009; Nishimura et al. 2009; Santiago et al. 2009a, 2009b; Yin et al. 2009; 

Gonzalez-Guzman et al. 2012; Zhang et al. 2015; Miao et al. 2018; Zhao et al. 2018). 
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Here, we will summarize latest updates on dynamics of ABA level, ABA signaling 

and its stringent regulation as well as versatile functions in physiological processes. 

METABOLIC CONTROL OF ABA LEVELS 

Plants quickly accumulate ABA and in turn activate several stress responses 

when subjected to abiotic stresses including drought, salt, cold, osmosis and several 

others. When environments are optimal, ABA is reduced to basal levels which 

promotes optimal growth. Modulation of ABA levels in tissues and cells is critical for 

balancing defense and growth processes when plants experience non-optimal 

environments. ABA levels are controlled by synthesis and degradation, metabolism, 

(de)conjugation and transport.  

ABA biosynthesis 

ABA is a sesquiterpenoid containing 15 carbon atoms. It is synthesized both in 

plants and some phytopathogenic fungi using two distinct pathways. Phytopathogenic 

fungi synthesize ABA through the mevalonate pathway with intermediates containing 

no more than 15 carbon atoms, which is also called the “direct pathway” (Hirai et al. 

2000; Izquierdo-Bueno et al. 2018; Takino et al. 2018). Plants synthesize ABA using 

the carotenoid pathway also called the “indirect pathway”. This is initiated from the 

cleavage of a C40 precursor known as β-carotene (Nambara and Marion-Poll 2005; 

Arc et al. 2013). It should be noted that β-carotene precursors including isopentenyl 

pyrophosphate (IPP), farnesyl diphosphate (C15), geranylgeranyl diphosphate (C20) 

are also precursors of the phytohormones cytokinins (CK), brassinosteroids (BR), and 

gibberellins (GA), respectively.  
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Genetic screens of viviparous mutants in maize have identified several ABA 

auxotrophic mutants, named vp2, vp5, vp7 and vp9, which are defective in zeaxanthin 

synthesis (James 1990). The conversion of zeaxanthin (C40) to xanthoxin (C15) is 

carried out in plastids (Figure 1). The Arabidopsis loss-of-function mutant, aba1, has 

defective gene for zeaxanthin epoxidase (ZEP) which catalyzes the conversion of 

zeaxanthin to all-trans-violaxanthin via antheraxanthin (Audran et al. 2001). This 

pathway then bifurcates into two pathways catalyzing all-trans-violaxanthin. One 

pathway requires neoxanthin synthase (NSY) encoded by the Arabidopsis ABA4 gene 

and an unknown isomerase, which convert all-trans-violaxanthin to 9'-cis-neoxanthin 

through all-trans-neoxanthin; in another possible pathway an unknown isomerase 

catalyzes all-trans-neoxanthin to 9'-cis-violaxanthin directly (North et al. 2007). 

Then, 9'-cis-neoxanthin and 9'-cis-violaxanthin both can be oxidatively cleaved by the 

9-cis-epoxycarotenoid dioxygenase (NCED) encoded by VIVIPAROUS14 (VP14) in 

maize, resulting in the production of the C15 xanthoxin, which can also act as a 

growth inhibitor (Anstis et al. 1975; Schwartz et al. 1997). In Arabidopsis, based on 

analyzing the sequence and function of homologous genes of VP14, NCED2, NCED3, 

NCED5, NCED6 and NCED9 have been identified as participants in a rate-limiting 

step in ABA biosynthesis, where NCED3 is perceived as the critical enzyme for ABA 

synthesis at this point (Iuchi et al. 2001; Tan et al. 2003).  

These processes all take place in plastids, and in the cytoplasm, a short-chain 

alcohol dehydrogenase encoded by AtABA2/AtGIN1 then converts xanthoxin into 

abscisic aldehyde which is eventually oxidized to abscisic acid (ABA) by AtABA3, 

which is an abscisic aldehyde oxidase (AAO3) (Bittner et al. 2001; Cheng et al. 

2002). First mutant identified as defective in ABA synthesis were in tomato and 

called flacca and sitiens, which are impaired in the oxidation of ABA aldehyde to 
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ABA (Tal 1966; TAYLOR et al. 1988). These data not only revealed an intact 

biosynthesis pathway of ABA, but also showed that ABA synthesis is via an indirect 

pathway in plants rather than a direct one based on C15 isoprenoid synthesis in fungi 

(Nambara and Marion-Poll 2005).  

ABA metabolism and (de)conjugation 

Plants accumulate ABA rapidly when exposed to many different environmental 

conditions. The maintenance of a basal level of free ABA consistent with different 

tissues in different environments is paramount to the appropriate growth and 

development states of the whole plant. Therefore, catabolism of ABA is also strictly 

controlled by both ABA conjugation and catalytic hydroxylation. ABA can be 

glucosylated by a UDP-glucosyltransferase (UGT) encoded by UGT71C5. The 

ABA-glucose ester, ABA-GE is an inactive form of ABA (Liu et al. 2015b). In 

contrast, AtBG1 and AtBG2 encode β-glucosidases that rapidly transform ABA-GE to 

active ABA which is released from the endoplasmic reticulum and vacuole 

respectively, when the environment changes (Lee et al. 2006; Xu et al. 2012). The 

conjugation cycle established by glucosyltransferase and β-glucosidase allows plants 

to phenotypically adapt to their environment through ABA-mediated responses by 

activating and inactivating ABA rapidly.  

Catabolism of ABA occurs by the conversion from ABA to phaseic acid (PA) 

which is catalyzed by a cytochrome P450 monooxygenase (P450) encoded by 

CYP707As (Kushiro et al. 2004). PA is then catalyzed to dihydrophaseic acid (DPA) 

and DPA-4-O-β-D-glucoside (DPAG) by PA reductase (PAR) ABH2 and 

glycosyltransferase (GT) respectively (Weng et al. 2016). Interestingly, PA has been 
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reported to selectively activate a subset of ABA receptor PYLs (Figure 1) (Weng et 

al. 2016).  

ABA transports 

In addition to ABA metabolism and (de)conjugation, the transports of ABA 

among cells and organs have global effects on plants. Keiichi Ikegami et al. found 

that isotope-labeled ABA moves from leaves to roots during water deficits and ABA 

can accumulate only in leaves when leaves and roots are separately exposed to 

limiting water (Ikegami et al. 2009). Other studies have confirmed that ABA is 

synthesized in leaves and then transported to other organs (Zhang et al. 2018a). Thus, 

transport of ABA between cells, tissues and organs is an important part of the role of 

ABA in systemic stress responses of the whole plant.  

ABA exists naturally in plants as both an anionic form (ABA-) and a protonated 

form (ABAH). ABAH can diffuse passively through the plasma membrane, and the 

diffusion of ABA largely declines with alkalization of the cytoplasm which increases 

during osmotic stresses (Wilkinson and Davies 1997; Karuppanapandian et al. 2017). 

The active transport of ABA relies on: a) ATP-binding cassette (ABCG) transporters; 

b) NRT1/PTR (NPF); c) multidrug and toxic compound extrusion (MATE)-type/DTX 

transporters (DTX50); d) AWPM-19 family proteins (OsPM1), which were originally 

identified in rice (Kuromori et al. 2010; Kuromori et al. 2011; Kanno et al. 2012; 

Zhang et al. 2014; Kang et al. 2015; Yao et al. 2018).  

In eukaryotes, there are eight subfamilies of ABA transporters, namely ABCA to 

ABCH. Of the ABCG subfamily, several members have been identified in 

Arabidopsis and Medicago truncatula, including both ABA exporters such as 
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AtABCG25, AtABCG31 and MtABCG20, and ABA importers such as AtABCG30 

and AtABCG40 (Kuromori et al. 2010; Kang et al. 2011; Kuromori et al. 2011; Kang 

et al. 2015; Pawela et al. 2019). Among these transporters, AtABCG25 functions in 

exporting ABA from vascular tissues to multiple sites such as guard cells. This 

transporter together with AtABCG31 also exports ABA from the endosperm, whereas 

AtABCG30 and AtABCG40 import ABA into the embryo (Kuromori et al. 2010; 

Kang et al. 2015). Besides ABCG transporters, AtDTX50 also acts as an exporter of 

ABA, and both AtNPF4.6 and OsPM1 control ABA influx (Kanno et al. 2012; Zhang 

et al. 2014; Yao et al. 2018). The gene encoding AtABCG22 is similar in sequence to 

AtABCG25. However, AtABCG22 may not transport ABA directly, although it is 

possibly involved in ABA efflux (Kuromori et al. 2011). Functionally, ABA 

transporters have been increasingly shown to be involved in transpiration, root 

morphology, seed germination and other processes important to stress responses of 

ABA transporters that mediate ABA movement from cell to cell. 

Stress-mediated changes in ABA 

Visualization is a functional approach in studying ABA. With the introduction of 

FRET (fluorescence resonance energy transfer) marker/sensors, ABACUS and 

ABAleon, detection of ABA at a cell level become attainable (Jones et al. 2014; 

Waadt et al. 2014). Changes in ABA levels in individual guard cells and roots were 

detected after exposure to altered amounts of humidity and salinity (Waadt et al. 

2014). The root derived CLAVATA3/EMBRYO-SURROUNDING 

REGION-RELATED 25 (CLE25) peptide, together with BARELY ANY 

MERISTEM (BAM) receptors, promote ABA biosynthesis in leaves, in response to 

dehydration by upregulating NCED3 expression (Takahashi et al. 2018). The 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
flowering repressor SHORT VEGETATIVE PHASE (SVP), a central regulator of 

ABA catabolism, is able to decrease expression of CYP707A1/3 while enhancing 

expression of AtBG1 simultaneously in response to water deficit (Wang et al. 2018c). 

Also, NGATHAs (NGAs) proteins upregulate expression of NCED3 via direct 

binding (Sato et al. 2018). The HD-ZIP transcription factor HAT1, a negative 

regulator in ABA biosynthesis, which suppresses the expression of both ABA3 and 

NCED3, can be phosphorylated and inactivated by SnRK2.3 (Tan et al. 2018). These 

transcriptional changes lead to the rapid release and subsequently increased synthesis 

of ABA, while reducing ABA catabolism under drought stress, allowing the initiation 

of several ABA mediated responses that affect the growth and survival of plants.  

Biotic stresses such as pathogen infection can also modulate ABA homeostasis 

in host plants. Some biotrophic pathogens such as wheat rust fungi can promote 

increases in ABA that lead to elevated apoplastic sugar accumulation by enhancing 

TaSTP6 expression (Huai et al. 2019). Upon infection by the necrotrophic pathogen 

Botrytis cinerea the transcription factor WRKY33 promotes ABA biosynthesis by 

upregulating transcription of NCED3 and NCED5 in Arabidopsis (Liu et al. 2015a). 

The tomato NAC transcription factor LeJA2 (for jasmonic acid 2) upregulates 

expression of LeNCED1 that also promotes ABA biosynthesis that can limit pathogen 

entry through stomata (Du et al. 2014).  

Hormone crosstalk also participates in the homeostasis of ABA. For example, 

auxin and GA coordinate fruit growth and ripening via affecting the regulatory loops 

of FveCYP707As and FveNCEDs to control endogenous ABA levels in woodland 

strawberry (Fragaria vesca) (Liao et al. 2018). In addition, JA accumulation is 
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required for ABA accumulation in roots of Arabidopsis after dehydration treatment 

(de Ollas et al. 2015).  

More future efforts would shed a light on linking the global modulation of ABA 

content to multiple biological processes. Collectively, all these progresses fine-tune 

the level of ABA during different development stages and in response to various 

environmental changes, so that more elements acting upstream of ABA accumulation 

and the processes coordinating dynamic modulation of ABA content and biological 

activity remain to be discovered. 

CORE ABA SIGNALING 

ABA functions in organs through the recognition by its intracellular receptors, 

PYLs (Ma et al. 2009; Park et al. 2009). The ABA bound PYLs form complexes with 

the clade A PP2Cs, allows the release of the inhibition of SnRK2 protein kinases by 

PP2Cs (Fujii et al. 2009; Ma et al. 2009; Park et al. 2009; Rubio et al. 2009). SnRK2s 

are then activated through autophosphorylation, or they can be activated by other 

protein kinases such as Raf-like MAPKKKs (Lee et al. 2015; Saruhashi et al. 2015; 

Nguyen et al. 2019). SnRK2s regulate multiple physiological responses through 

phosphorylating target substrates including ion channels, transcription factors, 

transporters amongst others (Umezawa et al. 2013; Wang et al. 2013). In the absence 

of ABA, PP2Cs interact with and repress SnRK2s to block ABA signaling.  

The discovery of PYL/PP2C co-receptors has led to a substantial effort to 

unravel the complex signaling system that controls plant responses to ABA. We 

review here recent studies conserving the crosstalk regulation of core ABA stress 

signaling components including PYLs, PP2Cs and SnRK2s. Regulation of these 
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components are critical to manage excessive and detrimental defense responses under 

abiotic stress conditions. They make up the core signaling system that maintains 

homeostatic optimal growth in non-optimal growth environments. 

ABA receptors 

In Arabidopsis, the PYL ABA receptor family consists of 13 ABA receptors, and 

one non-responsive PP2C regulator PYL13 (Fujii et al. 2009; Li et al. 2013; Zhao et 

al. 2013). PYLs have differing binding properties with ABA, and selectively interact 

with PP2Cs (Szostkiewicz et al. 2010; Hao et al. 2011; Antoni et al. 2012; Li et al. 

2013; Zhao et al. 2013; Tischer et al. 2017). PYLs bind with PP2Cs in both 

ABA-dependent and ABA-enhanced manners. Generally, monomeric PYLs such as 

AtPYL4-6 and AtPYL8-10 have higher ABA binding affinity and interact with 

PP2Cs in an ABA-enhanced manner; while dimeric PYLs such as AtPYR1 and 

AtPYL1-2 have lower ABA binding affinity and interact with PP2Cs in an 

ABA-dependent manner (Hao et al. 2011). In contrast, AtPYL13 and OsPYL12 

interact with and inhibit several PP2Cs in an ABA-independent manner (Li et al. 

2013; Zhao et al. 2013; He et al. 2014; Nemoto et al. 2018), indicating that they are 

not straightforward ABA receptors. Orthologous of PYLs have been identified in 

subaerial algae Zygnematophyceae (de Vries et al. 2018; Cheng et al. 2019). Albeit to 

the emergence before landing, the ancient ZcPYL8 encoded by Zygnema 

circumcarinatum cannot bind with ABA and possess the ABA-independent inhibition 

of PP2C (Sun et al. 2019). The ABA receptors have been reported only in land plants, 

suggesting that ABA signaling has been critical for plants during the transiting from 

an aquatic to a terrestrial environment (Lind et al. 2015; Wang et al. 2015a; Bowman 

et al. 2017; Jahan et al. 2019). 
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Although these PYLs function redundantly in regulating ABA coreceptor 

PP2Cs, some of them function separately in regulating distinct downstream factors. 

For example, AtPYL6 interacts with and regulates the central JA signaling regulator 

MYC2 in an ABA-enhanced manner, which may control the synergistic effect of 

ABA and JA on the inhibition of seed germination (Aleman et al. 2016). AtPYL8 and 

AtPYL9 interact with the auxin signaling regulator AtMYB77, which promotes 

lateral root growth recovery from inhibition by core ABA signaling (Zhao et al. 2014; 

Xing et al. 2016). PYLs are differentially expressed in multiple organs, cells, and 

different growth stages (Gonzalez-Guzman et al. 2012; Antoni et al. 2013). For 

example, AtPYL8 is specifically expressed in the root epidermis and in the lateral root 

cap, which is consistent with its functions in regulating growth of primary and lateral 

roots (Antoni et al. 2013; Zhao et al. 2014). AtPYL9 is highly expressed in senescent 

leaves, and promotes ABA-induced leaf senescence. Among the six PYLs expressed 

in guard cells, PYL2 mainly contributes to ABA-induced stomatal closure, whereas 

PYL4 and PYL5 are essential for stomatal responses to CO2 (Dittrich et al. 2019). 

The PYL ABA receptors are redundant but essential for ABA perception, signal 

transduction and response to stress in plants. This is demonstrated by the 

“stratospheric” order of PYL mutants, including the pyl quattuordecuple mutant in 

Arabidopsis, and the ospyl septuple mutant in rice (Miao et al. 2018; Tena 2018; Zhao 

et al. 2018). The growth of the pyl quattuordecuple mutant is severely impaired in soil 

and it fails to produce seeds. Another high order pyl duodecuple mutant, with all PYL 

ABA receptors mutated except AtPYL6, is extremely insensitive to ABA with respect 

to several physiological processes including seed germination, seedling growth, 

stomatal movement, leaf senescence and gene response expression (Zhao et al. 2018). 

The ospyl septuple mutant in rice, with all group I (OsPYL1-6 and OsPYL12) PYLs 
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mutated, is insensitive to ABA during seed germination and stomatal movement, and 

shows a strong preharvest sprouting phenotype in field conditions (Miao et al. 2018). 

In contrast to the severe growth defects of PYL mutants in Arabidopsis, mutations of 

group I OsPYLs promote rice growth in the field (Miao et al. 2018; Zhao et al. 2018). 

Overexpression of PYL ABA receptors enhances ABA responses and water use 

efficiency that impact abiotic stress tolerance in model plants such as liverworts, 

Arabidopsis and poplar, in addition to major crops such as rice and wheat (Santiago et 

al. 2009b; Saavedra et al. 2010; Kim et al. 2012; Pizzio et al. 2013; Kim et al. 2014; 

Tian et al. 2015; Yang et al. 2016; Zhao et al. 2016; Han et al. 2017; Mega et al. 

2019).  

Regulation of ABA receptors 

PYLs undergo posttranscriptional modifications such as phosphorylation, 

nitration and ubiquitination in plants. These decorations control the fine regulation of 

responses to environmental changes (Figure 2). PYLs are phosphorylated by multiple 

protein kinases including TOR, Arabidopsis Early flowering 1 (EL1)-like casein 

kinase (AEL), C-terminally encoded peptide receptor 2 (CEPR2), and Cytosolic ABA 

receptor kinase 1 (CARK1). TOR kinase phosphorylates PYLs at a conserved site 

corresponding to PYL4 Ser114 that inactivates PYLs (Wang et al. 2018b). The AEL 

casein kinases phosphorylate PYLs at partially conserved sites corresponding to 

PYR1 Ser109 and PYR1 Ser152 and promotes ubiquitination and degradation of 

PYLs (Chen et al. 2018). The plasma membrane localized leucine-rich receptor-like 

kinase CEPR2 phosphorylates PYLs at a conserved site corresponding to PYL4 Ser54 

and promotes degradation of PYLs (Yu et al. 2019). A putative receptor-like 

cytoplasmic kinase (RLCK) VIII subfamily kinase CARK1 phosphorylates PYR1 and 
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PYL1/2/3/8 at a less conserved site corresponding to PYR1 Thr78 which enhances 

ABA responses, whereas the cark1 mutant is less sensitive to ABA (Zhang et al. 

2018b; Li et al. 2019b). CARK1 is activated by ABA, but the ability of CARK1 to be 

activated by environmental changes or other hormones is still unknown (Zhang et al. 

2018b). The degradation of PYLs is regulated both by ubiquitin ligase substrate 

adaptor DDA1 and RING-type E3 ligase RSL1 via the ubiquitin-proteasome system, 

and by the ESCRT-I components VPS23A and ALIX through the endosomal-vacuole 

pathways (Bueso et al. 2014; Irigoyen et al. 2014; Yu et al. 2016; García-León et al. 

2019). Consistent with their known functions, the triple knockout mutant of CEPR2 

and its homologs Phloem intercalated with xylem (PXY) and PXY-Like 2 (PXL2) are 

hypersensitive to ABA. This is similar to the mutants of TORC, including tor and 

raptor1b, triple mutants of AELs, and mutants of members of ESCRT-I Component, 

such as vps23a, alix-1 and fyve (Yu et al. 2016; Chen et al. 2018; Wang et al. 2018b; 

García-León et al. 2019; Li et al. 2019a; Yu et al. 2019). Besides posttranscriptional 

regulation of PYLs, expression of PYR1, PYL1-6 and PYL8 is also down-regulated by 

osmotic stress (Bhaskara et al. 2012), which could be important in the establishment 

of homeostatic ABA responses. 

Signaling crosstalk between ABA receptors and growth promoting signaling 

networks is crucial to the balance between growth and ABA-dependent stress 

responses which generally inhibit growth. It is well known that TOR is activated by 

glucose and other components that participate in energy homeostasis (Xiong and 

Sheen 2012). Besides energy signaling components, nitric oxide (NO) also inactivates 

PYLs by tyrosine nitration (Castillo et al. 2015). Although it is still not clear how 

CEPR2 and AEL responded to environmental changes or other hormones, 

phosphorylation of PYLs by CEPR2 and TOR is diminished after ABA treatment, 
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suggesting that the activity and abundance of PYLs are tightly controlled under 

unstressed conditions, to prevent ABA-mediated suppression of growth (Wang et al. 

2018b; Yu et al. 2019).  

Regulators of ABA co-receptors  

Protein phosphorylation and dephosphorylation control is crucial for maintaining 

the appropriate balance of ABA-mediated growth control depending on the 

environmental status of the plant (Zhu 2016; Shi et al. 2018; Yang and Guo 2018). 

Protein phosphatases can interact with and inhibit SnRK2, SnRK1, SnRK3 and even 

mammalian AMPKs, which are also core components in abiotic stress, ABA and 

energy signaling (Sanders et al. 2007; Zhu 2016). Among 80 PP2Cs in Arabidopsis, 

nine clade A PP2Cs including ABI1/2, HYPERSENSITIVE TO ABA (HAB) 1/2, 

ABA-HYPERSENSITIVE GERMINATION1 (AHG1), AHG3/PP2CA, HIGHLY 

ABA-INDUCED (HAI) 1/2/3, and 3 clade E PP2Cs E-Growth-Regulating PP2C 

(EGR) 1/2/3 function as negative regulators of stress responses. Clade A PP2Cs are 

core negative regulators of ABA signaling, and have important functions for 

suppressing stress signaling and allowing the appropriate degree of plant growth 

suppression, especially under unstressed or mild stress conditions (Fujii et al. 2009; 

Rubio et al. 2009; Umezawa et al. 2009; Komatsu et al. 2013). Under stressed 

conditions, the ABA-bound PYLs interact with the conserved C-terminal catalytic 

domains of clade A PP2Cs, which in turn releases the inhibition of SnRK2s by PP2Cs 

and allows activation of stress responses (Ma et al. 2009; Park et al. 2009).  

Besides clade A PP2Cs, EGR1/2/3 suppress plant growth partially through 

dephosphorylating microtubule associated protein MASP1 Ser670 and destabilizing 

microtubules which are required for appropriate levels of growth under osmotic stress 
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(Bhaskara et al. 2017). They also inhibit proline accumulation and suppress resistance 

responses to drought and cold stresses through suppressing SnRK2 activation 

(Bhaskara et al. 2017; Ding et al. 2019). Up to now, ancient PYL without ABA 

binding affinity has been reported in algae, while PP2Cs and SnRK2s from algae 

have conserved function compared with that from higher plants (Lind et al. 2015; de 

Vries et al. 2018; Cheng et al. 2019; Sun et al. 2019).  

Plant growth and stress responses are carefully controlled by both activity and 

abundance of PP2Cs. Although ABA and abiotic stresses inactivate PP2Cs to induce 

stress responses, the expression levels of PP2Cs are actually upregulated by abiotic 

stresses and ABA through ABRE-BINDING FACTORS (ABFs), creating a 

counteractive control loop to maintain new homeostatic levels (Bhaskara et al. 2012; 

Bhaskara et al. 2017; Wang et al. 2019). Also, under unstressed conditions or 

transition from stressed to unstressed conditions, ABA and abiotic stress signalings 

need to be suppressed to appropriately promote plant growth. Indeed, several studies 

have indicated that activities of PP2Cs can be enhanced by several PP2C binding 

proteins. For example, ENHANCER OF ABA CO-RECEPTOR1 (EAR1) interacts 

with the non-conserved N-terminal regulatory domains of PP2Cs, including ABI1/2, 

HAB1/2, AHG1/3, to enhance their activities (Wang et al. 2018a). The PR5 

receptor-like kinase 2 (PR5K2) also may repress ABA and stress signaling through 

phosphorylating ABI1/2 and enhancing their protein phosphatase activities (Baek et 

al. 2019). Moreover, function of the clade E PP2C, EGR2 requires myristoylation by 

NMT1, which is suppressed by cold stress (Ding et al. 2019). 

By contrast, under stressed conditions or ABA treatment, activities of PP2Cs can 

be reduced by ABA receptor PYLs and several other regulators, such as the putative 
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leucine-rich repeat-RLK, RECEPTOR DEAD KINASE1 (RDK1) that can promote 

ABA responses by interacting with ABI1 (Kumar et al. 2017). PP2Cs also are 

degraded by the 26S proteasome pathway through the PUB12/13 U-box, RGLG1/5 

RING-type and multimeric cullinc3 (CUL3)-RING-based E3 ligases by interacting 

with the adaptor BTB/POZ AND MATH DOMAIN proteins (BPMs), that are 

promoted by ABA (Figure 2) (Kong et al. 2015; Wu et al. 2016; Belda-Palazon et al. 

2019; Julian et al. 2019). 

Regulators of core protein kinases 

Abiotic stresses and ABA induce the activation of several protein kinases 

including SnRK2s, CPK3, SOS2/CIPK24/SnRK3.11 and CIPK23 in Arabidopsis and 

MdCIPK22 in apple, affecting phosphorylation changes of multiple downstream 

regulators (Guo et al. 2001; Boudsocq et al. 2007; Ho et al. 2009; Lin et al. 2009; 

Mehlmer et al. 2010; Umezawa et al. 2013; Wang et al. 2013; Ding et al. 2015; Ding 

et al. 2018; Ma et al. 2018). Among these, the SnRK2.2/3/6 core protein kinases that 

are activated by osmotic, salt, cold, and ABA treatment. It is well known that 

ABA-bound PYLs interact with clade A PP2Cs, which in turn release SnRK2.2/3/6 

from inhibition. SnRK2s may then be activated by autophosphorylation and/or 

transphosphorylation by several other kinases, such as the Raf-like MAKKKs, 

RAF10 and ARK (for ABA and abiotic stress-responsive Raf-like kinases) (Figure 2). 

These kinases appear to be critical for the activation of SnRK2s and subsequent 

responses to ABA and abiotic stresses in Arabidopsis and Physcomitrella patens 

(Huang et al. 2014; Lee et al. 2015; Saruhashi et al. 2015; Stevenson et al. 2016; 

Hwang et al. 2018; Nguyen et al. 2019; Shinozawa et al. 2019). 

BRASSINOSTEROID INSENSITIVE 2 (BIN2), the Glycogen synthase kinase 3s 
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(GSK3s)/Shaggy-like kinases (ASKs) repress brassinosteroid (BR) signaling, whereas 

they enhance ABA signaling through phosphorylation specifically of SnRK2.2/3 at 

Thr180 on SnRK2.3, but not SnRK2.6 (Cai et al. 2014). Moreover, NO signaling also 

represses ABA signaling through S-nitrosylation of SnRK2.6 at Cys137 that 

inactivates SnRK2s (Wang et al. 2015b). Although PYLs are essential for ABA 

mediated activation of SnRK2s, they are also involved in antagonistic regulation of 

activation of SnRK2s during osmotic stress (Zhao et al. 2018). Together, SnRK2s can 

be activated by abiotic stresses, and repressed by growth promoting signals such as 

NO and BR. 

ABA-INDUCED STOMATAL CLOSURE 

Stomata is pivotal for gas exchange and transpiration of plants, and the closure 

of it can be induced by numerous environmental factors such as drought, pathogen 

attack, dark, low humidity, high CO2 concentrations and so on (Bauer et al. 2013; 

Assmann and Jegla 2016; Martin-StPaul et al. 2017; Su et al. 2017). ABA plays an 

important role in the closure of stomata by regulating guard cell ion fluxes. Stomatal 

closure is the major process controlling transpirational water loss of plant. ABA 

affects stomatal pore size by both Ca2+-dependent and Ca2+-independent pathways 

(Figure 3). 

Ca2+-dependent pathway 

ABA can induce opening of Ca2+ channels which allows calcium ions to mediate 

the closure of stomata pores (Mcainsh et al. 1990, 1992; Hamilton et al. 2000; Pei et 

al. 2000). The increase in cytosolic Ca2+ in guard cells in response to ABA likely 

involves the induction of reactive oxygen species (ROS) and 
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inositol-1-4-5-triphosphate (IP3) (Gilroy et al. 1990; Lee et al. 1996; Pei et al. 2000; 

Murata et al. 2001; Mustilli et al. 2002). Ca2+ mediated signals could be decoded by 

several Ca2+ sensors, including Calcium Dependent Protein Kinase (CPK) 

3/4/6/10/11, which may phosphorylate and activate the Slow-type (S-type) anion 

efflux channels including SLOW ANION CHANNEL1 (SLAC1) and SLOW ANION 

CHANNEL-ASSOCIATED (SLAH3), which are involved in stomatal closure and 

reduction of leaf water loss (Mori et al. 2006; Zhu et al. 2007; Zou et al. 2010; Brandt 

et al. 2012). Although CPK21 and CPK23 also phosphorylate and activate SLAC1 

and SLAH3, cpk21 and cpk23 knockout mutants have enhanced drought tolerance, 

which is inconsistent with the general role of CPK21/23 and other CPKs in regulating 

anion channels (Ma and Wu 2007; Geiger et al. 2010; Franz et al. 2011; Geiger et al. 

2011; Brandt et al. 2012; Demir et al. 2013). CPK8 was also reported to regulate 

stomatal closure that is induced by ABA, ROS and Ca2+ through the direct 

phosphorylation of CATALASE3 (CAT3) (Zou et al. 2015). The 

CPK11-Di19-PR1/2/5 pathway also contributes to drought tolerance probably by 

affecting stomatal movement (Liu et al. 2013). Besides CPKs, CBL-interacting 

protein kinase 23 (CIPK23) has also been implicated through genetic analyses in 

ABA-induced stomata closure (Cheong et al. 2007). In addition to the modulation of 

anion channel efflux, other ion channels can be regulated in a Ca2+ dependent 

manner. GOAK, a K+ outward rectifying channel, is phosphorylated and activated by 

CPK21 (Hosy et al. 2003; van Kleeff et al. 2018). Moreover, CPK13 also inactivates 

KAT1 and KAT2, two K+ influx channels, and affects stomatal behavior through 

specific phosphorylation events (Ronzier et al. 2014). The activity of the H+-ATPase 

of guard cells of fava bean guard cells was shown to be inhibited by Ca2+ in isolated 

microsomal membranes (Kinoshita et al. 1995).  
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Ca2+-independent pathway 

The ABA activated SnRK2.6/Open Stomata1 (OST1) is a key regulator of 

stomata closure (Li et al. 2000). ABA can also activate the malate transporter 

Rapid-type (R-type) anion channel, QUAC1 (also called ALMT12), which is 

independent of Ca2+ and is controlled by OST1 in guard cells (Meyer et al. 2010; 

Imes et al. 2013). OST1 can also up-regulate the activity of SLAC1 and KUP6, a 

KUP/HAK/KT family potassium efflux transporter, and inhibit KAT1 through 

phosphorylation, also affecting stomatal movement (Kwak et al. 2001; Geiger et al. 

2009; Sato et al. 2009; Osakabe et al. 2013). Significantly, OST1 also can 

phosphorylate and negatively regulate the bHLH transcription factor, 

ABA-responsive kinase substrates (AKS1), which subsequently binds to the promoter 

of KAT1 directly, leading to reduced expression of KAT1 (Takahashi et al. 2013). In 

Arabidopsis guard cells, NRGA1, a putative mitochondrial pyruvate carrier can 

negatively regulate the inhibition of inward K+ currents through ABA (Li et al. 2014). 

A plasma membrane receptor kinase GHR1, also controls ABA- and H2O2-regulated 

stomatal closure by controlling SLAC1 activity, and contributes to systemic stomatal 

responses (Hua et al. 2012; Devireddy et al. 2018). 

Both Ca2+-dependent and Ca2+-independent pathways mediate the decline of 

turgor of guard cells through membrane depolarization during water deficits, leading 

to reductions in stomatal aperture. It has been thought that OST1 and CPKs converge 

at the level of PP2Cs so that Ca2+ and CPKs have an effect on stomatal movement 

downstream of ABA receptors in guard cells. For example, ABI1 can 

dephosphorylate and inactivate CPK6 and OST1 in guard cells (Geiger et al. 2011; 

Brandt et al. 2012). It has been argued that ABA may function upstream of Ca2+ 
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signaling because ABA accumulates slower than Ca2+ under osmotic stress. Recent 

studies have also suggested that salicylic acid (SA) may induce stomatal closure 

independent of OST1 but dependent on CPK3/6 (Prodhan et al. 2018). There is a 

possibility that osmotic stresses may also induce Ca2+ elevation and regulate stomatal 

movement through Ca2+ sensors directly. 

CO2, pathogen and ABA signaling 

The involvement of several environmental factors together with ABA on 

stomatal closure has been studied as well. An increase in CO2 concentration is able to 

reduce the number and size of stomata (Woodward 1987; Gray et al. 2000). Stomatal 

movement also is triggered by high concentrations of CO2 and this is impaired in ost1 

mutants but not in ABA biosynthesis mutants such as nced3/nced5 and aba2-1, and in 

the ABA signaling mutant pyl112458. These results suggest that the role of CO2 in 

stomatal closure is independent of ABA but not OST1 (Xue et al. 2011; Hsu et al. 

2018). However, another research has shown that the effects of CO2 on stomatal 

closure are dependent on ABA signaling, and therefore, the relationship between CO2 

and ABA needs further clarification (Chater et al. 2015). Recently, Dittrich et al. has 

shown that the ABA receptor PYLs integrate several environmental factors such as 

CO2, dark and relative air humidity under long-term change of environment (Dittrich 

et al. 2019). 

Plants also mediate stomatal behavior to counter the ability of some pathogens to 

control stomatal functions (stomatal immunity). Two receptors that recognize Pep1 

peptide of damage/danger-associated molecular patterns (DAMPs), PEPR1/2, have 

been recognized to function in stomatal guard cells to control stomatal pore size 

through SLAC1/SLAH3, independent of OST1 (Zheng et al. 2018). However, a 
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flagellin peptide from P. syringae (flg22), a member of the pathogen-associated 

molecular pattern (PAMP), induces stomatal closure by stimulating SLAC1/SLAH3 

in an OST1-dependent manner in guard cells (Guzel Deger et al. 2015). Su et al. also 

revealed that the MKK4/5-MPK3/6-organic acid metabolism cascade 

inter-dependently functions with ABA to mediate stomatal immunity (Su et al. 2017). 

Also, the phytotoxin produced by P. syringae, coronatine (COR), is able to block 

ABA-induced stomatal closure but not block the MPK3/6-mediated pathway (Melotto 

et al. 2006). 

ABA IN SEED DEVELOPMENT 

In planta, when male and female gametes combine to form a fertilized egg, the 

zygote will further develop through embryogenesis and endosperm proliferation. 

After that, subsequent division of embryo cells is arrested at the mature embryo stage 

and storage products accumulate. In the final stages of seed development dehydration 

occurs spontaneously and the embryo enters a desiccation-tolerant and dormant state. 

Upon re-hydration, the embryo radicle enlarges by cell elongation breaking through 

the seed coat (germination) and the embryo enters the next generation (Mansfield and 

Briarty 1996; Raz et al. 2001). ABA is involved in many phases of embryo 

development during transformation of generations (sporophyte to gametophyte to 

sporophyte). Here we will introduce the roles of ABA in storage product 

accumulation, desiccation tolerance, dormancy, germination and post-germination 

growth arrest.  
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Central regulation in embryo development 

The continuous growth of the embryo is arrested during the transition from the 

embryogenesis phase to the early maturation phase, which is primarily regulated 

through control of cell division (Raz et al. 2001). Embryo growth arrest in mature 

seeds is controlled by FUSCA3 (FUS3), Leafy cotyledon 1 (LEC1) and LEC2, which 

is evidenced by the fact that fus3, lec1 and lec2 mutants all fail to fully suspend 

embryo growth and exhibit premature germination. Mutants impaired in ABA 

signaling, such as ospyl septuple, snrk2.2/3/6 triple and abi3/vp1 double mutant also 

show premature germination in Arabidopsis, rice and maize (Robichaud et al. 1979; 

Finkelstein and Somerville 1990; Nakashima et al. 2009; Miao et al. 2018). However, 

ABA biosynthesis and signaling mutants aba1 and abi3 display normal embryo 

growth, indicating that FUS3, LEC1 and LEC2 control embryo growth arrest 

independent of ABA signaling (Raz et al. 2001).  

During seed maturation, the ABI3/FUS3/LEC2 (AFL), subfamily of B3 

transcription factors, together with LEC1 and LEC1-LIKE (L1L) compose of a 

transcription control network called LAFL (Figure 4) (Kwong et al. 2003; Jia et al. 

2014). Hormone signaling, some metabolic pathways and other transcriptional control 

networks are targeted by LAFL and mediate the embryogenesis process but have 

distinct temporal patterns of development (Jia et al. 2013). The core LAFL network 

functions upstream of several genes that modulate seed development including Zinc 

finger factor PEI1, APETALA2 (AP2), BABY BOOM (BBM), FLOWERING LOCUS 

C (FLC), and two genes encoding seed storage proteins (SSP) including 2S albumin 

storage protein 1 (At2S1) and CRUCIFERIN C (CRC) (Jia et al. 2014). Moreover, 

BBM has been also reported to regulate expression of most members of the LAFL 
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network during somatic embryogenesis (Horstman et al. 2017). The LAFL network, 

can also be regulated by the sister subgroup of AFL type B3 transcription factors such 

as VIVIPAROUS1/ABI3-LIKE1/2/3 (VAL1/2/3), which repress the LAFL network 

during germination but not affect seed maturation (Figure 4) (Jia et al. 2013; Zhou et 

al. 2013; Jia et al. 2014).  

Last phase of seed maturation 

After the interruption of cell division during embryogenesis, plant seeds begin to 

accumulate storage components and begin to desiccate. This final stage results in a 

metabolically quiescent or dormant state, enabling seeds to survive several stressful 

environments. ABA also functions in this final developmental stage and affects 

several important traits of the dormant seed.  

Reserve product accumulation 

Seed maturates by metabolically producing and then accumulating several 

reserve components need for germination and initial seedling growth and 

development. The initiation of reserve accumulation is mediated by several processes 

such as gene expression, posttranslational modulation, strengthening the activity of 

enzymes and ATP production (Bewley et al. 2013a).  

Before storage product accumulation, there is often a period of de-greening that 

is important for seed maturation and some commercial traits such as storability, 

essential for seed oil quality (Delmas et al. 2013). SnRK2s that are activated by ABA 

and the downstream transcription factor ABI3 are often required for this de-greening 

process, which can be observed by the presence of a greenish-brown seed coat 

evidenced by snrk2.2/3/6 and abi3-6 (Nakashima et al. 2009; Delmas et al. 2013). 
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ABI3 interacts with the SnRK2 activated transcription factor ABI5, and these 

components may function together in transcriptional regulation of ABA-responsive 

genes (Nakamura et al. 2001). Indeed, two stay-green genes, SGR1 and SGR2, are 

targets of ABI3 and function redundantly in regulating de-greening of seed (Delmas 

et al. 2013).  

ABA functions in the storage of lipids, proteins and carbohydrates in seeds. 

Consistent with the role of ABA in promoting accumulation of seed storage, products, 

often seedlings impaired in ABA signaling such as pyl duodecuple and snrk2.2/3/6 

triple mutants exhibit reduced accumulation of seed products, whereas overexpression 

of SnRK2.6 increases overall seed production (Zheng et al. 2010; Gonzalez-Guzman 

et al. 2012; Zhao et al. 2018). Inactivation of SnRK2.6, which mediates ABA 

signaling, but not ABA-irresponsive SnRK2.4, results in a 7% to 25% reduction in oil 

content of seed (Zheng et al. 2010). According to microarray data, the expression of 

some genes encoding seed reserve products such as the 12S globulin storage protein 

is impaired in the snrk2.2/3/6 triple mutant, confirming that ABA can promote seed 

storage accumulation through transcriptional regulation (Nakashima et al. 2009). 

Indeed, two ABF transcription factors ABI5 and bZIP67, together with ABI3, and the 

AP2/ERF transcription factor ABI4, control expression of genes related to numerous 

events involved in seed storage processes downstream of ABA (Nambara et al. 1992; 

Parcy et al. 1994; Soderman et al. 2000; Mendes et al. 2013; Zinsmeister et al. 2016). 

The transcription factor, bZIP67, together with two other LEC1 inducible 

transcription factors, L1L and NUCLEAR FACTOR-YC2 (NF-YC2), activate FATTY 

ACID DESATURASE 3 (FAD3) to affect omega-3 fatty acid accumulation in seeds 

(Mendes et al. 2013). ZmbZIP22 has also been reported to regulate seed storage 

events. For example, ZmbZIP22 is required for the transcription of a 27-kD γ-zein 
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gene (Li et al. 2018; Dong et al. 2019). ABA highly induces the expression of the 

DELAY OF GERMINATION 1 (DOG1)-LIKE 4 (DOGL4), which encodes a major 

inducer of reserve accumulation during seed maturation (Figure 4) (Sall et al. 2019). 

Ectopic expression of DOGL4 enables the expression of seed maturation‐ specific 

genes even during the germination process, including the major seed reserve proteins 

ALBUMINs, CRUCIFERINs and OLEOSINs (Sall et al. 2019). Altogether, the classic 

PYLs-SnRK2s-ABFs signal cascade plays an essential role in the assimilation and 

deposition of storage nutrients in plant seeds. 

In the LAFL network, LEC1 is a key modulator in fatty acid (oil) biosynthesis 

through the global elevation of the expression of several related genes. For example, 

Arabidopsis 2S storage protein 3 (At2S3), a representative seed storage protein gene, 

is dependent on FUS3 and partially dependent on both ABI3 and the AP2/EREBP 

type transcription factor WRINKLED1 (WRI1) (Kagaya et al. 2005b; Mu et al. 

2008). FUS3 modulates the expressions of storage protein genes in an indirect but 

still ABA dependent manner, by requiring the ABA-induced synthesis of several 

ectopically intermediate regulatory factor(s) (Kagaya et al. 2005a). A LEC2-GR 

inducible line, in which LEC2 was fused with the glucocorticoid receptor (GR) 

promoter, is activated by the gulcocorticoid dexamethasone (DEX), accumulates seed 

specific mRNA and storage oil in leaves. This suggests that LEC2 harbors a 

synergistic activity with ABI3, FUS3 and LEC1 to affect reserve product 

accumulation (Santos Mendoza et al. 2005). The AP2/EREBP domain protein, WRI1 

also functions in multiple processes involving the accumulation of oil and sugars in 

seeds. The wrinkled-like seed mutant wri1 that disables the conversion by sucrose 

and glucose into triacylglycerols (TAGs), has an 80% reduction of seed oil content, 

and an elevation of soluble sugar (Focks and Benning 1998; Cernac and Benning 
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2004; Mu et al. 2008; To et al. 2012). WRI1 is regulated by LEC1, LEC2 and 

GmDREBL at the transcriptional level. WRI1 is also regulated by 14-3-3, KIN10 and 

perhaps by OST1 at the protein level (Baud et al. 2007; Mu et al. 2008; Baud et al. 

2009; Sirichandra et al. 2010; Ma et al. 2016; Zhang et al. 2016; Zhai et al. 2017; 

Kong and Ma 2018). To date, we still have an incomplete understanding of the roles 

of ABA in regulating seed storage-related proteins and genes. The role of ABA in 

controlling the activity of transporters for nutrients such as sugar and nitrogen in seed 

storage processes is very likely but remain obscure (Baud et al. 2005; Chen et al. 

2015). For instance, the mutant suc5 was also found to have diminished levels of seed 

oil (Baud et al. 2005). Altogether, members of LAFL network together with other 

factors have crucial roles in the orchestration of the accumulation of storage products 

during the maturation of seeds. However, we need further research on the effects of 

ABA on several nutrients-specific transporters and importance of these transporters in 

both seed storage and maturation. 

Desiccation tolerance 

In the early periods of histodifferentiation and cell expansion, the water content 

of seeds is gradually increased followed by a significant decrease in water during 

accumulation of storage components and overall maturation (Bewley et al. 2013b). 

Simultaneously, with the final stages of maturation, seeds acquire severe desiccation 

tolerance and dormancy. The attainment of this tolerance is associated with the 

accumulation of a series of protectants such as antioxidants, sugar and late 

embryogenesis abundant (LEA) proteins (Koornneef et al. 2002; Finch-Savage and 

Leubner-Metzger 2006). Interactions between LEAs and sugars contribute to the 

formation of a glassy state that suspends metabolic activities and protects seed tissues 
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and cells from many survival threatening events such as membrane damage (Buitink 

and Leprince 2008). Core elements of ABA signaling, like SnRK2s, 

PYR/PYL/RCARs and ABFs, have been found to control the regulation of gene 

expression that controls key protection from seed desiccation such as LEAs and HSPs 

that are modulated by the LAFL network (Wehmeyer and Vierling 2000; Nakashima 

et al. 2009; Maia et al. 2014; Zhao et al. 2018). Besides, being an important 

component in light signaling, HY5, is also able to induce the expressions of LEAs 

probably through binding with the promoter of ABI5 directly (Chen et al. 2008). 

DOG1 was also demonstrated to increase the expressions of LEA and HSP, via 

ABI5/ABI3, and may accelerate the accumulation of N-rich compounds, which 

promote the dormancy and storability of seed (Dekkers et al. 2016).  

Dormancy and germination 

After dehydration, metabolism ceases dramatically and the seed begins to enter 

into a quiescent state, which in most species, continues into various degrees and types 

of dormancy. ABA is a core regulator in this process and, it is noteworthy, that only 

the embryo produces ABA, not the maternal tissues. In this sense dormancy is a trait 

of the embryo and its associated tissues (Karssen et al. 1983; Frey et al. 2004). 

Genetic screening of mutants deficient in seed dormancy has led to the identification 

of several regulators of hormone metabolism and action signaling network that 

controls seed maturation and dormancy. Several regulators including HISTONE 

MONOUBIQUTINATION1 (HUB1), REDUCED DORMANCY 2 (RDO2), and 

DOG1 are involved in seed dormancy directly (Liu et al. 2007; Liu et al. 2011; 

Nakabayashi et al. 2012). In rice, SEED DORMANCY 4 (OsSDR4) is considered to 

be a regulator that is involved in seed dormancy with an unknown function. In 
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Arabidopsis, SDR4-LIKE (AtSDR4L) regulates dormancy release and germination 

through both gibberellin (GA) synthesis and activities (Sugimoto et al. 2010; Cao et 

al. 2019).  

Many mutations that affect ABA biosynthesis or sensing and responding to ABA 

such as aba1, aba2/3, nced6/9, snrk2.2/3/6 and pyl112458379101112, all show 

reduced seed dormancy and early germination (Koornneef et al. 1982; 

Leon-Kloosterziel et al. 1996; Lefebvre et al. 2006; Nakashima et al. 2009; Zhao et 

al. 2018). Recently two raf-like MAPKKKs, Raf10/11 can phosphorylate SnRK2s 

and ABFs and affect seed dormancy (Lee et al. 2015; Nguyen et al. 2019). DOG1 

also modulates seed dormancy as the mutant dog1 is completely nondormant. 

However, dog1 has nearly WT sensitivity to external application of ABA, indicating 

that the nondormant phenotype of dog1 does not result from impairment of ABA 

signaling (Bentsink et al. 2006). Based on genetic analysis, DOG1 and ABA are both 

required for normal seed dormancy (Alonso-Blanco et al. 2003; Bentsink et al. 2006; 

Nakabayashi et al. 2012). Other research has revealed that DOG1 is characterized as 

an α-helical heme-binding protein that functions in the inhibition of AHG1/AHG3 

downstream of heme (Nee et al. 2017; Nishimura et al. 2018). Although DOG1 also 

interacts with another PP2C protein REDUCED DORMANCY5 (RDO5), RDO5 also 

seems to function in seed dormancy independent of both ABA and DOG1 (Xiang et 

al. 2014).  

GA is essential for the seed germination, which is evidenced by the defects in 

seed germination of several mutants with disrupted GA synthesis such as ga1, ga2 

and ga3 (Debeaujon and Koornneef 2000; Ogawa et al. 2003). DELLA proteins, 

RGA-LIKE 2 (RGL2) and RGL3, are central repressors of seed germination 
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indicating the important role of GA signaling in seed germination (Lee et al. 2010). 

The GA-insensitive mutant, sleepy1 (sly1), exhibits attenuated seed germination due 

to enhanced accumulation of RGL2 (Ariizumi and Steber 2007). There are several 

other factors involved in GA signaling that function in seed germination, such as 

F-box proteins SNEEZY (SNE) and SPINDLY (SPY) (Silverstone et al. 2007; 

Ariizumi et al. 2011).  

The opposing roles of ABA and GA in seed dormancy and germination result in 

a balanced control mechanism. As a negative regulator in GA signaling, the 

loss-of-function mutant rgl2 has a reduced ABA concentration after imbibition, 

leading to the release from dormancy and acceleration of germination (Piskurewicz et 

al. 2008; Lee et al. 2010). NF-YC, together with RGL2, promotes ABI5 expression to 

promote ABA-mediated repression of seed germination (Liu et al. 2016). The COP9 

Signalosome 1 (CSN1), which is recognized as a modulator of ubiquitin E3 ligase, 

facilitates the degradation of RGL2, and CSN5A and may inhibit ABI5, possibly 

through a physical interaction, therefore promoting seed germination (Jin et al. 2018). 

Expression of both RGL2 and ABI5 also are activated by exogenous ABA 

(Piskurewicz et al. 2008). Together, the balancing roles of GA and ABA on 

germination is mainly achieved through effects on RGL2. Other signaling 

components of hormone metabolism and synthesis also contributes to this balance. 

During cold stratification, expression of CYP707As that participate in ABA 

metabolism, and AtGA3ox1 that is involved in GA synthesis are elevated, leading to a 

high GA/ABA ratio, which promotes seed germination (Okamoto et al. 2006; Su et al. 

2016; Chen et al. 2019). The same expression control pattern was found with the 

atper1 mutant that has a dysfunctional seed-specific peroxiredoxin (Chen et al. 2019). 
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In imbibed seed, DELLA protein is degraded by the elevated GA to attenuate 

transcriptional activities of DELLA-ABI3-ABI5 module that accelerate germination. 

When exposed to high temperature, increased transcriptional activity of the 

DELLA-ABI3-ABI5 complex inhibits germination (Lim et al. 2013). This balance 

between ABA and GA control also involves interactions with other hormones like 

ethylene (ET), BR, strigolactone (SL), auxin, ROS, NO, and with the environmental 

cues i.e. temperature and light (Chen et al. 2009; Xiang et al. 2014; Dekkers and 

Bentsink 2015; Shu et al. 2016; Chen et al. 2019).  

Post-germination growth arrest 

ABA also functions in the process of post-germination growth (PGG) arrest. 

PGG arrest protects embryos from stressful surroundings that may threaten seedling 

survival. For example, germinated seed maybe subjected to an increasingly stressful 

osmotic environment. Seedling growth will cease under such conditions and reenter 

the quiescent state. This will protect the seedling until its surroundings become 

feasible for further growth and development needed to establish a photoautotrophy 

system (Hwang et al. 2018). Exogenous ABA is also able to induce PGG arrest. 

ABA-deficient and ABA-insensitive mutants are not able to normally transition to 

PGG arrest, suggesting that ABA plays an essential role in the establishment of PGG 

arrest (Barrero et al. 2005). There may also be multiple other participants in this 

process. For example, JMJ30, a histone demethylase, is able to block the inhibition 

mediated by the H3 lysine 27 trimethylation epi mark (H3K27me3) at the promoter of 

SnRK2.8 and hence release the suppression of ABI3 to promote PGG arrest (Wu et al. 

2019). Recently, it was reported that RAF22 in Arabidopsis acts as a negative 
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regulator of PGG arrest that is, independent of the canonical ABI5-mediated ABA 

cascade (Hwang et al. 2018).  

 We continue to reveal the multiple roles of ABA in several stages of seed 

development. Besides the processes mentioned above, ABA also functions in seed 

testa pigmentation, capsule dehiscence and radicle emergence and in earlier aspects of 

seed maturation (Finkelstein and Lynch 2000; Frey et al. 2004). Seed are the 

guarantors of the survival of future generations. Their successful entry into and 

emergence from dormancy is critical to species survival in a constantly changing 

environment that can abruptly become hostile to several life processes. Therefore, 

further understanding the seed guides us to recognize plants better. 

THE ROLE OF ABA IN PLANTS DURING SEVERAL DEVELOPMENTAL 

STAGES 

The biological regulations of ABA are ubiquitous during multiple developmental 

stages of plants, and many of them are implemented through ABF-mediated 

transcriptional processes. There are nine members in the ABF family including 

ABF1, ABF2/ABA–RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), 

ABF3, ABF4/AREB2, AREB3, ABI5, bZIP15, bZIP67 and EEL, all belonging to the 

bZIP subfamily. These factors function redundantly in transcriptional regulation 

mediated by ABA (Fujita et al. 2005). ABI3 and ABI4 are two other important 

transcription factors that regulate ABA responses, through transcriptional 

reprogramming. Here we conclude distinct biological roles of ABA during different 

developmental phases. 
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ABA in seed and seedling 

ABA has important function during several stages of the alteration of generations 

through gamete generation, subsequent fertilization and embryo development. 

Alteration of generations (sexual reproduction) conveys two major adaptive 

mechanisms. First, gamete formation by meiosis is the basis of most genetic variation 

through which natural selection works. Second, the meiotic process occurs by the 

passage into and out of a period of dormancy. During the dormant period, plant 

embryos can survive extreme environmental changes. As we have described, ABA 

mediates several developmental processes that affect the successful entry into 

dormancy as well as maintenance of and emergence from the dormant stage 

(Schopfer et al. 1979; Perkins et al. 2019). After germination, high-concentration 

ABA attenuates the growth of primary root, and in contrary, low-dosed ABA 

maintains the growth may through restricting the ethylene production controlled by 

expression of ACS2/5, under water stress (Figure 5) (Spollen et al. 2000; Xu et al. 

2010; Li et al. 2011). Exogenous ABA can also promote the elongation of the 

seedling primary root in the pyl112458 and pyl duodecuple mutants 

(Gonzalez-Guzman et al. 2012; Zhao et al. 2018). Genes in clade A PP2Cs family are 

intensively induced by ABA in the root and this may lead to decreased inhibition of 

primary root growth (Wang et al. 2019). In addition to root growth, ABA inhibits the 

emergence of vegetative leaves under non-stress conditions (Yoshida et al. 2019). 

Quite interestingly, ABA promotes the quiescence and repression of stem cell 

differentiation in the primary root meristem, which is dependent on WUSCHEL 

RELATED HOMEOBOX5 (WOX5), a target of auxin signaling that is essential for 

Quiescence Center (QC) function (Han et al. 2010; Zhang et al. 2010; Wu et al. 
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2018). Moreover, Yeast-One-Hybrid (Y1H) results have revealed that both WOX5 

and NAC DOMAIN PROTEIN13 TFs may bind directly to the ABRE promoter 

element, which may also function in DNA damage responses and stem cell identity 

(Wu et al. 2018). Controlling stem cell development may be a critical strategy to 

adapt to stress environments through re-development of tissues and organs with more 

appropriate phenotypes. 

ABA in adult plant 

ABA also has several effects on adult plants. Under conditions of limited water, 

ABA transcriptionally regulates many genes. ABA induces several LEA class genes 

including AIL1, RD29B, RAB18, EM1 and EM6 which are the classic 

ABA-responsive marker genes thought to protect plants from water loss (Wang et al. 

2018d). Mutants defective in multiple ABFs display wilted phenotypes under limiting 

water conditions. However, many details of ABFs regulation of water loss remain 

unclear (Yoshida et al. 2010; Yoshida et al. 2015). ABA also activates the expression 

of genes controlling wax synthesis helping to block water loss from leaves (Cui et al. 

2016; Zhao et al. 2016; Zhao et al. 2017). The expression of wax-synthesis-related 

genes, KCS2, CER1, LTP3 and WSD1, are strongly decreased in snrk2.2/3/6 and 

abi1-1 but are increased in pRD29A-PYL9 mutants (Zhao et al. 2016). ABA effects 

on stomatal movement also require OST1-phosphorylation of AKS1. ABA also 

accelerates the degradation of starch to sugar during osmotic stress through 

transcriptionally controlling the expressions of β-AMYLASE1 (BAM1) and 

α-AMYLASE3 (AMY3) through several ABFs. The amy3bam1 mutant displays 

dysfunctional translocation of carbon sources from leaves to roots under osmotic 

stress, suggesting that ABA may function to promote the export of sugars from source 
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leaf tissues to sink tissues in the root (Thalmann et al. 2016). Through transcriptional 

modulation of ABFs, ABA controls chlorophyll degradation and starch biosynthesis 

and uptake of toxic cadmium (Cd) through an interaction between ABI5 and MYB49 

(Figure 5) (Zhu et al. 2011; Gao et al. 2016; Zhang et al. 2019). 

Under appropriate environmental conditions, the adult plant will begin to 

transition to flowering, which restarts the alteration of generations at the point of 

meiosis and pollination (gamete fusion). ABA is involved in several developmental 

processes associated with flowering and transition of generations. ABA functions in 

coordination of fruit growth and ripening (Rogler and Hackett 1975; Rusconi et al. 

2013; Liao et al. 2018). And ABA also promotes capsule dehiscence and flower 

organ abscission (Zhao et al. 2018). However, as described, the major function of 

ABA in flowering involves its role in embryo dormancy which is the ultimate 

response to survive extreme environments. 

ABA in senescent plant 

An important aspect of the transition to flower and the successful production of 

dormant structures (seeds) is the senescence process. Senescence is the last step of 

development and can be induced by multiple factors. ABA plays critical roles in 

accelerating leaf senescence through transcriptional mechanism (Gao et al. 2016; 

Zhao et al. 2016). The expressions of ORESARA1 (ORE1) and 

SENESCENCE-ASSOCIATED GENE12 (SAG12), two marker genes induced during 

senescence, are transcriptionally activated by ABA signaling involving both ABFs 

and RAV1 (for ABA-insensitive/VP1) transcription factors (Figure 5) (Gao et al. 

2016; Zhao et al. 2016). ABFs, such as ABI5 and EEL, also participate in dark 

induced senescence (Sakuraba et al. 2014). ABA systematically controls energy flow 
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from source tissues (senescent leaves) to sink tissues (dormant seeds and floral 

meristem) (Zhao et al. 2016; Zhao et al. 2017). The floral meristems, under 

appropriate conditions, develop into dormant embryos. Senescence, in both processes, 

redistributes resources to dormant structures. 

PERSPECTIVES 

ABA has versatile roles in regulating plant growth, development and response to 

various environmental stresses. From 1960s when it was discovered till now, 

functions of ABA have been extensively studied, which was focused on the major 

metabolism and signaling pathway, and the regulatory mechanism of seed dormancy 

and stomatal movement. Due to the technology limitation of ABA visualization and 

the difficulty in illustrating stress signaling, the regulation of ABA metabolism has 

not been well studied, especially in cellular and tissue levels. Future efforts should be 

directed on how environmental changes modulate dynamics of ABA metabolism, and 

on how ABA regulates stress responses beyond functions in seeds and stomata.  

Understanding how plants modulate ABA accumulation in response to 

environmental stresses is an important and challenging work, which would be 

facilitated by the identification of stress sensors. Although several putative sensors of 

salt, cold and osmotic stresses that affect Ca2+ signals have been identified, the 

regulatory mechanism of ABA accumulation by these components is still unknown 

(Yuan et al. 2014; Ma et al. 2015; Jiang et al. 2019). Therefore, addressing the 

regulation of ABA dynamics requires investment on the upstream signaling of 

stresses together with innovative technologies for ABA visualization. The first 

challenge is to understand how stress induced Ca2+ signal regulates SnRK2s 

activation and ABA accumulation that rapidly response to stresses. Ca2+ signal may 
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function together with ROS in regulating systemic signal that controls ABA 

accumulation in distal leaves, and ROS can inhibit core negative regulator PP2Cs 

(Sridharamurthy et al. 2014; Devireddy et al. 2018), indicating the role of transient 

Ca2+ signal in regulating stress induced ABA accumulation. The next challenge is to 

clarify the spatiotemporal regulation of ABA accumulation and signaling including: 

1) long-distance transport of stress signaling or ABA; 2) ABA dynamics in cellular, 

tissue or organ level. The recently developed excellent markers and reporters can 

facilitate these analysis (Duan et al. 2013; Jones et al. 2014; Waadt et al. 2014; Wu et 

al. 2018). Beside Ca2+ and ROS signals, the small peptide CLE25 may also 

participate in the long distance delivery of stress signal to promote ABA biosynthesis 

in leaves (Ren et al. 2019).  

The diverse function of ABA in regulating physiological processes is mainly 

attributed to the multiple downstream substrates regulated by SnRK2s. During past 20 

years, excessive efforts have been focused on the regulation of seed germination and 

stomatal movement based on the well-established molecular-genetic and 

electrophysiological systems. However, recent biochemical and genetic studies have 

suggested that ABA also modulates multiple processes including senescence, 

abscission, vegetative dormancy, plant growth, carbon allocation, stem cell 

maintenance and differentiation and so on, probably through phosphorylation 

regulation by SnRK2 protein kinases (Fujii and Zhu 2009; Fujita et al. 2009; 

Nakashima et al. 2009; Yoshida et al. 2010; Gonzalez-Guzman et al. 2012; Umezawa 

et al. 2013; Wang et al. 2013; Yoshida et al. 2014; Miao et al. 2018; Zhao et al. 2018; 

Shinozawa et al. 2019). However, it is still not clear how ABA regulates these 

processes. Future efforts should also be directed to the regulation mechanism of these 

downstream responses. First, we should figure out the role of basal ABA. Plant 
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growth is severely impaired both in ABA biosynthesis and signaling mutants even 

under well-watered conditions, indicating the growth promotion role of basal ABA 

signaling (Zhao et al. 2018). Next, how ABA regulates carbon allocation should be 

further studied. Carbon allocation is accompanied with leaf senescence, bud and seed 

dormancy, and is closely related to the harvest index of crops (Savage et al. 2016). 

Third, how ABA functions in stem cell maintenance and differentiation should be 

resolved (Han et al. 2010; Zhang et al. 2010; Wu et al. 2018). As sessile organisms, 

plants cannot “flight” as animals during stresses, and have to “fight” against stresses. 

Stem cells might be the “secret weapon” for plants to deal with stresses for 

re-development of tissues and organs. Finally, how we could breed productive and 

resistant varieties with cutting-edge technology broking the tradeoffs between growth 

and defense. Together, it is urgent to decipher the role of ABA in diverse 

physiological processes of plants and provide theoretical basis addressing critical 

problems regarding production, quality and resistance. 
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Figure legends 

Figure 1. ABA biosynthesis, catabolism, and (de)conjugation in plants 

Plants synthesize ABA using the carotenoid pathway initiated from β-carotene (C40). 

Processes that convert C40 to xanthoxin (C15) all take place in plastids, and in the 

cytoplasm, ABA2 and AAO3 convert xanthoxin into ABA. Among these processes, 

conversion of 9'-cis-neoxanthin and 9'-cis-violaxanthin to xanthoxin by NCEDs is a 

rate-limiting step in ABA biosynthesis. ABA catabolism is controlled by both ABA 

conjugation and catalytic hydroxylation. ABA can be glucosylated into ABA-GE by 

UGT71C5, whereas AtBG1 and AtBG2 can transform ABA-GE to active ABA. ABA 

can be catalyzed to phaseic acid (PA) by CYP707As, which in turn is catalyzed to 

dihydrophaseic acid (DPA) by PA reductase (PAR). 
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Figure 2. Regulations of core ABA signaling components  

In the absence of ABA, clade A PP2Cs interact with and inhibit SnRK2s. In the 

presence of ABA, PYLs form complexes with the PP2Cs, allows the activation of 

SnRK2s and downstream responses. The core ABA signaling components are tightly 

regulated by multiple regulators. PYLs are phosphorylated by multiple protein 

kinases including TOR, AEL, CEPR2, and CARK1. TOR phosphorylates and 

inactivates PYLs, while AEL and CEPR2 phosphorylate PYLs and promote their 

degradation. CARK1 phosphorylates PYLs and may enhances its activity, whereas 

NO inactivates PYLs by tyrosine nitration. The degradation of PYLs is regulated both 

by DDA1 and RSL1 via the ubiquitin-proteasome system, and by the ESCRT-I 

components VPS23A and ALIX through the endosomal-vacuole pathways. Activities 

of PP2Cs can be enhanced by EAR1 and the receptor-like kinase PR5K2, whereas 

their activity can be reduced by RDK1. PP2Cs are degraded by the 26S proteasome 

pathway through the PUB12/13 U-box, RGLG1/5 RING-type and 

CUL3-RING-based E3 ligases by interacting with BPMs. SnRK2s can be activated 

by several other kinases including RAF10 and BIN2. Besides clade A PP2Cs, the 

clade E PP2C EGR2 also inhibits SnRK2s. Although PYLs are essential for ABA 

mediated activation of SnRK2s, they also are involved in antagonistic regulation of 

SnRK2 activation during osmotic stress. 
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Figure 3. Modulation of ABA-induced stomatal closure 

ABA induces stomatal closure by both Ca2+-dependent and Ca2+-independent 

pathways. ABA-induced Ca2+ signal involves the induction of ROS and IP3, and may 

be decoded by CPK3/4/6/10/11/21/23 through activation of SLAC1 and SLAH3 to 

promote efflux of Cl-, which is also regulated by GHR1. CPK21 activates the K+ 

outward rectifying channel GOAK, while CPK13 inactivates KAT1 and KAT2, two 

K+ influx channels. CIPK23, CPK8-CAT3 and CPK11-Di19-PR1/2/5 modules also 

regulate stomatal closure. The ABA activated SnRK2.6/OST1 is a key regulator of 

Ca2+-independent stomatal closure. OST1 activates SLAC1, KUP6 and QUAC1 to 

promote efflux of Cl-, K+, and malate2-, and inhibits KAT1 to reduce influx of K+. 

OST1 can also phosphorylates and inhibits AKS1 to reduce expression of KAT1. 

Together, ABA induces stomatal closure by regulating guard cell ion fluxes. 
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Figure 4. Regulations in seed development through ABA  

Time ordered developmental processes consist of embryogenesis, storage product 

accumulation, desiccation tolerance, dormancy, germination and post-germination 

growth arrest, which are deeply relied on transcriptional regulations. Embryogenesis 

is controlled by FUS3-LEC1-LEC2 network independent of ABI3. Both LAFL 

network and ABA signaling involve in storage product accumulation. Among the 

storage products, LEAs, together with HSPs, are pivotal for desiccation tolerance. 

The antagonism between ABA and GA largely contributes to the dormancy and 

germination. After germinating, stress induces post-germination growth arrest. 
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Figure 5. ABA functions in different stages during plant growth  

ABA regulates multiple developmental stages of plants. ABA promotes root stem cell 

maintenance through ABFs together with WOX5, and maintains primary root growth 

by restricting the ethylene production through ACS2/5. ABA limits water loss through 

promoting wax synthesis and stomatal closure. ABA may promote bud dormancy by 

coordinating leaf senescence, starch degradation and source to sink carbon 

translocation through transcriptional reprogramming. ABA also protects plants from 

drought stress by promoting accumulation of LEAs and prolines. Together, ABA 

regulates plant growth, development, and stress responses. 
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