
Modules, environments 
and other topics

HORT 530
Lecture 14



Modules in Python 
• Modules are other scripts that you can include in 

your script.
• A great way to include code that you or someone 

else wrote.
• Python has hundreds of standard modules. For 

example: 'os', 'sys', 'time' etc.
• Non-standard python modules have to be installed 

before you can use them.
• On servers, ask the system administrator to install 

them for you OR install them in your home folder.



The module search path

• Python searches for modules in the locations specified 
by sys.path.

• sys.path tells you the locations AND order of them.
• You can install packages anywhere and add that 

location to the PYTHONPATH environment variable.



Module version clashes
• Since import does not support any version number, 

only one version of a module can exist at a time.
• You may need to use different versions of the same 

module with different scripts.
• Keeping track of all the version numbers for each of 

your scripts gets tedious.
• Python's solution is to use "environments" which bind a 

version of python to a set of modules using the 
PYTHONPATH and other environment variables.



Python environment managers



Anaconda
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html



Creating anaconda environments

• conda create --name py310 python=3.10

• conda activate py310

• conda install numpy scipy



Regular expressions in Python
• The regular expression module in Python is 

called 're'
• Match = re.search(pat, string)
• Match.group() contains results of the search.
• Search always finds the leftmost and largest 

match for the pattern.
• re.findall() allows finding all matches, not just 

the leftmost.
• re.sub(pat,replacement, string) allows 

replacing a pattern.



Special characters

• \d digit, i.e., 0-9
• \D anything except a digit
• \w word (includes letter, digit, underscore)
• \W any character that is not included in word
• ^ Start of line
• $ End of line
• Examples: /\d\d$/



Character classes

• [A-Z] matches all upper-case letters
• [a-z] matches all lower-case letters
• [0-9] matches all digits
• [tnr][hd] matches th or nd or rd
• Character class can be negated by using ^ as 

the first character in the class.
• [^0-9] matches all characters that are not a 

number



Quantifiers

• * zero or more matches
• + one or more matches
• ? zero or one matches
• {2} exactly 2 matches
• {2,10} at least 2, maximum of 10 matches
• {,10} 0-10 matches





Sorting a list of values

• Sorting is the process of ordering items in an 
increasing (or decreasing) order based on their 
value.

• Lists in Python can be sorted in two ways:
• list.sort() function
• sorted() function

• sorted is a general function that will accept any 
iterable item, such as dictionaries, tuples etc.



Sorting a list of values

• Remember to capture the output of sorted in a 
new object 



Sorting tuples

• Sorting tuples by default will sort them by the first 
element in the tuple. In this example, that is the name 
of the employee.

• The sorted() function can be used to sort based on a 
different element by using the ‘key’ argument.

• In this example, the lambda construct is used to 
generate an inline functions that simply returns the 
element at index 2.



Sorting Dictionaries

• Sort by keys : 

• Sort by values : 

• Sort keys by values : 



Using pandas
import pandas as pd

import numpy as np

expMat =pd.read_csv("GSE49418_series_matrix.txt",sep='\t',header=0,index_col=0)

newInd = (np.arange(len(expMat.columns)) // 3) + 1

expAvg =expMat.groupby(newInd, axis=1).sum()

expAvg.rename(columns={1:"WT-CK",2:"MT-CK",3:"WT-Dry",4:"MT-Dry"},inplace=True)

expAvg = expAvg.div(3)

filtMat =expMat[expAvg["WT-CK"]>5]

filtMat2 =expMat[(expAvg["WT-CK"]>5) & (expAvg["MT-CK"]>5)]

print(expMat.shape)

print(filtMat.shape)

print(filtMat2.shape)

print(expMat.corr())

print(filtMat.corr())

print(filtMat2.corr())



Final project specifications
• The code for this project MUST be written in the 

Python language and has to run on the Purdue Scholar 
cluster.

• The project submission HAS to include:
• Input data set, student’s code (on Scholar) and 
• All instructions required to execute the code (Readme.txt on 

Scholar OR in an email).

• Project submission deadline is 12 PM on the May 7th, 
2022.

• Final project is worth 30% of your grade.


