
Generating commands 
and jobs in Python

HORT 530
Lecture/Lab 13

Instructor: Kranthi Varala



When to use supercomputers
• Need to run hundreds to thousands of similar 

jobs.

• Need to run a few large jobs quickly.

• Tasks can be divided into smaller portions and 
run in parallel.



Parallelization
• Refers to the ability of dividing a large task into 

smaller parts that can all be run in parallel.

• E.g., Correlation matrix of 10,000 genes.

• Can be divided into 10,000 jobs where each 
job works on one gene. 



Script creates its own Shell
• A script is always executed in its own shell, i.e., 

when you execute a shell script it starts a new 
child shell within the shell you executed the 
program from.

$ chmod 755 myscript.sh
$ ./myscript.sh
Hello World!
$

Login shell

Execute commands in 
myscript.sh
Send output to parent 
shell.

Child shell



Task: Download all sequencing runs from 
GSE18110

• https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP002313
• Download the "Accession List"

• Use scp to copy file over to scholar.rcac.purdue.edu

• This file contains the list of SRR IDs.

• The command to download the results from a sequencing result is:
• fastq-dump SRR039929

• This command needs the bioinfo and sra-toolkit modules.

https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP002313


Generating UNIX commands from Python

SRR039920

SRR039921

SRR039922

SRR039923

SRR039924

SRR039925

SRR039926

SRR039927

SRR039928

SRR039929

Run each download 
command 
individually.

10 jobs have to be 
created manually.

No record of 
parameters give to 
command.

Run time for 
commands is 
cumulative and 
needs user 
attention. 

Generate commands 
in Python.

1 script can run jobs 
sequentially.

Script keeps track of 
parameters given to 
command.

Run time for 
commands is 
cumulative and 
DOESN’T need user 
attention. 

Use Python to 
generate multiple 
SLURM scripts.

Each SLURM job 
runs in background.

Script keeps track of 
parameters given to 
command.

Run time for 
commands will be 
<= cumulative and 
DOESN’T need user 
attention. 

Option 1 Option 2 Option 3



Controlling processes from command line

• Foreground: Default mode for running commands. The 
shell waits on the process to finish.
• Process retains control of the command line.
• Key input is directed to the active process.

• Background: Process is initiated and pushed to the 
background.
• Control of command-line is returned to the user.
• Key input and other interactions are no longer passed to the 

process.
• Processes can be pushed to background at initiation using &



Controlling processes from Python

• Wait: Default mode for running commands. The python 
interpreter waits on the process to finish.
• Process retains control of the shell.
• Both os.system() and subprocess.call() do this by default

• Submit and forget: Command is initiated in a separate 
process.
• Processes can be pushed to background at initiation using &
• subprocess.Popen(), by default, does not wait for child 

process to finish



Creating command strings vs. scripts

• Command strings: Use python to generate the command 
string with a combination of fixed strings and variables.
• Submit command using os.system() or subprocess.call()
• Submit command using subprocess.Popen() if you need to 

capture output.
• Scripts: Use file handle object to create a new script file with 

commands and parameters embedded.
• subprocess.Popen() to submit the script as a job
• Remember to make shell scripts executable (chmod 755)
• SLURM scripts need not be executable

• When submitting multiple jobs, creating scripts helps keep 
track of the exact command and parameters used.



Generating UNIX commands from Python

• Python can be used to generate repetitive UNIX 
commands that operate over multiples of a set
• For example, find a given sequence in all fastq files

• Key: A UNIX command is a string with fixed words, 
such as command name, and variable words, such as 
name of input file(s)

Fixed Variable



Making system calls from python

• We can use python to make calls to the system 
i.e., call commands and scripts available on the 
system command line.
• The 'os' and 'subprocess' module are the two 

main ways to interact with the system 
command line.
• The 'os' module is "deprecated", which means 

it's the old way of doing things and will not be 
supported in the future.



• os.system & subprocess.call() sent the 'cmd' 
command to the operating system.
• 'cmd' was run on the operating system and its 

output was dumped to the screen. 
• Result: A new file called AraLip.fasta was 

created on the file system in the same directory

Running UNIX commands from Python



Capturing output of UNIX commands 
from Python

Output is not 
captured in 'p'



Capturing output of UNIX commands 
from Python

Output is 
captured in 'p'

Extra characters
from new line

character



Capturing output of UNIX commands 
from Python

Output is 
captured in 'p'

Newline
processed



Generating shell scripts from Python
• Python can be used to generate shell scripts that differ 

in few parameters
• For example, SLURM scripts with different job parameters

• Key: A job script is made of fixed lines, such as job 
parameters, module loads etc. and variable lines, such 
as the lines specifying the input line.

Fixed

Variable



Generating shell scripts from Python

• Example 1: Write a python script that creates one 
SLURM job to fastq-dump the series of SRR IDs

• Example 2: Write a python script that creates one 
SLURM job for each SRR ID to fastq-dump the data


