
Functions, Scope &
Arguments

HORT 530
Lecture 12

Instructor: Kranthi Varala

Control Flow

• Control flow is the path taken by the interpreter
through your script.

• By default control flow is linear i.e., each
statement in the script is executed in the order
that it appears.

• We have looked at two ways to alter this flow
before:

• Branching via if/elif/else statements.
• Loops via for/while statements.

Branching logic
• Used to implement alternate paths for the logic

flow.

https://upload.wikimedia.org/wikipedia/commons/4/44/LampFlowchart.png

Lamp flowchart with if/else

No
Yes
Yes

Lamp flowchart with if/else

No
No
No

Functions
• Functions are a set of statements designed to achieve

a single task. For example, a function to calculate the
average of a sequence of numbers.

• Functions are pieces of code that are outside the
normal control flow of a program and need to be
"called" by the main program.

• Functions are typically used to perform repeated tasks.

• Functions improve readability and reusability of code.

Examples of functions
• A function to read a file and retain only the specified

columns in a 2-D list.
• A function to read FASTA files and store them in a

dictionary.
• A function to fit a linear regression line through a set of

observations.
• A separate function to plot two sets of values as an X-Y

scatter plot.

• A function that creates a JSON file from a data
structure.

Role of Functions

Image Credit: Learning Python by Mark Lutz

Function

Arguments

Global
variables

Files

Return

Mutables

Global
variables

Files

Local
variables

Structure of a function
• In the main program a function is called by its name:

• myFunction(a,b,c)

• A function is defined using the keyword def:

def myFunction(x,y,z):

Sum = x+y+z

print("Sum is :" + Sum)

return "Done."

• Note: Remember to define a function before calling it.
This is because Python interpreter goes line-by-line
and doesn’t know things that are not yet defined.

Creating a function : def vs. lambda

• def is a key word used to “define” a block of
executable code. Code within the def block is not
available to the interpreter until called.

• def creates a function object and assigns the object to
the name of the function.

• def can appear as a separate code block in the same
python file, or inside a loop or condition or even within
another function (enclosed).

• lambda creates a function object as well, but it has no
name. Instead it simply returns the result of the
function.

Control flow: call and return
• When a function is called the flow of the main program

stops and sends the "control" to the function.
• No code in the main program will be executed as long as

the function has the control.
• Function "returns" the control to the main program using the
return statement.

• Every function has an implicit return statement.
• We can use the return statement to send a value or object

back to the main function.
• Since return can send back any object you can send

multiple values by packing them into a tuple.
• If no return statement is given the function returns the None

object.

Example of a function

Example of a function

Example of a reusable function

Example of a reusable function

Scope
• Namespace is the complete list of names, including all

objects, functions, etc. that exist in a given context.
• The scope of an object is the namespace within which

the object is available.
• A variable/object created in the main program is

available all through the program i.e., global
namespace

• A variable/object created within a function is only
available within that function i.e, local namespace

• When a variable name is used the Python interpreter
looks for that variable within the relevant scope first.

LEGB rule for Scope
• Python interpreter follows the LEGB rule for identifying

the object by name.
• Local first: Look for this name first in the local

namespace and use local version if available. If not, go
to higher namespace.

• Enclosing second: If the current function is enclosed
within another function, look for the name in that outer
function. If not, go to higher namespace.

• Global third: Look for the name in the objects defined
at global scale (e.g., main program).

• Built-in last: Finally, look for the variable among
Python’s built-in names.

Scope: Built-ins

Keeping track of Scope

• x and y are
local variables
that only exist
in the scope of
the function
mySum

• BUT, mySum
itself is a
global function
that exists in
the global
scope.

Output:

Keeping track of Scope

• a and b are
local variables
that only exist
in the scope of
the function
mySum

• Changing the
value of local
'a' does not
affect global 'a'

Output:

Using global variables in functions

• Forces a to be
pulled from the
global space.

• Any changes
made to the
global variable
here will affect
the variable
outside the
function as
well.

Output:

Arguments
• The objects sent to a function are called its arguments.

Arguments are sometimes also called parameters.
• Passing an object as a argument to a function passes

a reference to that object.
• Argument names in the def line of the function become

new, local names.
• Arguments are passed in two ways:

• 'Immutables' are passed by value eg., String, Integer, Tuple
• 'Mutables' are passed by reference eg., Lists

Argument passing with mutables

• person is a string
(immutable) and
thus passed by
value to the local
variable a.

• ages is a list
(mutable) and thus
passed to b as a
reference.

• a and b are both
local variables, but
b is the same object
as ages.

Output:

Arguments passed to function

Name Object

caller

function

Image adapted from Learning Pyton by Mark Lutz

person

ages

a

b

‘Bob’

5,15,35

Control returned to main

Name Object

caller

function

Image adapted from Learning Pyton by Mark Lutz

person

ages

a

b

‘Bob’

25,15,35

‘Smith’

Maintaining integrity of mutables

• Integrity of lists and other mutables can be
maintained by passing an explicit copy.

• For example:

Sends a copy of the list ages

Sends a reference to the list ages

Summary: Using functions in your project

• Functions allow separation of code into logical units to
improve code readability.

• Functions allow reusing code i.e., ‘cut and paste’ to
move code across your scripts. Eg., a function to read
FASTA files into a dictionary can be reused across any
script that needs to read FASTA files.

• Limits on scope of variables allows reusing variable
names while still maintaining data integrity.

• Beware of passing mutable objects as arguments.

