
Numbers, Strings and
Lists
HORT 530
Lecture 9

Instructor: Kranthi Varala

Core data types

• Numbers
• Strings
• Lists
• Dictionaries
• Tuples
• Files
• Sets

Variable names
• Rules for variable names

• Must begin with a letter or an underscore
• May only contain letters, numbers and underscore

• Variable names are case-sensitive i.e.,
• var ≠ Var ≠ vAr ≠ vaR ≠ VAr ≠ vAR ≠ VaR ≠ VAR

• Good practices for names:
• Pick a name that implies the value it should contain.

• Eg., UserName instead of user or name or n.
• Use descriptive names (not too long)

• Eg., log2Expression, currentLine
• Use a consistent style.

• UserName OR user_name
• Examples of Bad variable names:

• Test, temp, var, x, y, z, i, j

Reserved keywords
• A list of keywords are built in to Python and should be

avoided as variable names.
• List of builtins can be retrieved using the '__builtin__'

module in Python2 OR 'builtins' module in Python 3.

Python 2 Python 3

Reserved keywords Python2

Reserved keywords Python3

Variable references an Object

• A variable name is a reference to an object in memory.
• The object has a data type, assigned either explicitly

by the user or implicitly (dynamic typing) by the
variable declaration.

• A = 'Sample String' creates a string object in
memory and A becomes a reference to that object.

Sample
StringA

Variable
name

str object
in memory

Shared References

• Copying a variable creates a new variable name that
also refers to the same object in memory, called a
shared reference.

• B = A creates a new reference to the same object
in memory.

Sample
StringA

B

References and dynamic typing
• Dynamic typing allows changing the type of a variable.
• A = '42' now changes the apparent data type of A to an

integer.

• The reference from A to 'Sample String' is removed.
• B still points to the 'Sample String' object.
• If all variable reference are removed from an object, the

object will be marked for removal by Python.
• The process of removing dereferenced objects is called

garbage collection

Sample
String

A

42B

Shared references with mutables

• Shared reference works differently with mutable data
types i.e., lists, dictionaries and sets.

• A = [10,20,30] creates a List object in memory.
• B = A creates a new reference to the List object.

[10,20,30]A

B

Shared references with mutables

• In-place changes to a mutable object are conveyed to
all variables referencing it.

• A[1] = 25 changes the list object in memory.
• As a result, the value of B[1] is also 25.

[10,25,30]A

B

Forcing a copy

• B can be forced to be a separate object, by using the
'copy' module in python

• A = [10,20,30] changes the list object in memory.
• B = copy.copy(A) results in a new object that is a

physically separate copy of A.

[10,20,30]A

B [10,20,30]

Copies of mutables produce new objects

[10,25,30]A

B [10,20,30]
[10,25,30]

A

B

Numeric type objects

• Can be integers (int), floating points (float), or
complex numbers (complex).

• Simple assignment creates an object of
number type such as:

• myInt = 3 Integer
• myFloat = 4.56 Floating-point
• myFloat = 2E-10 Floating-point
• myComplexNum = 1+2j Complex number

• Can convert types using int(), float() functions.
• Common numeric operations: +, -, /, *

Numbers : Special operators
• X ** Y Raise X to the Power of Y
• X % Y Divide X by Y and return the

remainder
• X // Y Floor of X/Y. Floor is the closest

smaller integer.
• Division can be tricky because dividing one

integer by another integer can return a float.
Python 2 Python 3

Numbers : Operator precedence
• Operators can be mixed together in a single

expression.
• Python resolves the use of operators using

precedence order: ** > / > % > * > - > +
• A * B + C / D : (C/D) first, then (A*B), then

add these two values.

Other numeric tools

• The 'math' module in python gives you access
to more numeric functions.

• Constants: math.pi, math.e return the values of
natural constants pi and e respectively.

• Functions: pow(), sqrt(), abs(), min(), max(),
round(), math.ceil(), math.floor(), math.trunc(),
etc.

Strings
• A string object is a 'sequence', i.e., it’s a list of items

where each item has a defined position.
• Each character in the string can be referred, retrieved

and modified by using its index.
• Strings can be defined with single or double quotes

Strings: Operations
• + and * are used for string concatenation and

repetition.
• len() returns the length of string.
• Index : S[i] returns the character at index i
• Slice: S[i:j] returns the characters from i to j. S[:] returns

a copy of the string S
• Slice with step: S[i:j:k] returns all characters from i to j

but moves by k characters instead of 1.

Strings: Special characters
• String special characters are defined by a preceding

backslash, also called the escape character.
• '\n' = newline
• '\r' = carriage return
• '\t' = tab
• '\' itself can be captured in the string by using '\\' This is

called escaping the escape.

Strings: Conversions
• Conversion to and from other data types is done using

the appropriate conversion function: int(), str(), float()
etc.

• Characters can be converted to and from their ASCII
code using the ord() and chr() functions.

• Useful when dealing with FASTQ files

String: Methods
• Since every String is an object it has a set of methods that

can operate on its value.

• Common string methods useful to you are: find(), replace(),
split(), lstrip(), rstrip(), capitalize(), lower() etc.

• Since strings are immutable, methods that modify the string,
such as replace, concatenate etc. return a new string object.

String: Methods

Lists

• List is a more general sequence object that
allows the individual items to be of different
types.

• Equivalent to arrays in other languages.
• Lists are mutable, i.e., a list can be changed

without having to create a new list object

Lists: Methods
• Built-in methods for Lists:

• Methods operate on the list in-place.
• For example, sort() will change the order of

items in the current list.

Lists: Common Methods

• myList.append() : Adds one item to the end of the list.

• myList.extend() : Adds multiple items to the end of the list.

• myList.pop() : Remove last item from the list.

• myList.reverse() : Reverse the order of items in list.

• myList.insert(i,item): Inserts ‘item’ at position i.

• myList.remove(item) : Finds ‘item’ in list and deletes it from
the list.

Summary: Data types and their methods

• All variables in Python reference an object with a fixed
data type.

• When the variable value is changed, its dynamically
assigned an object with a matching data type.

• Be aware of whether you are creating a reference or a
copy of an object.

• Python data objects have built-in methods to simplify
common operations performed on such data types.

• Use dir() on object to retrieve its associated methods.

