
Introduction to
Python: Data types

HORT 59000
Lecture 8

Instructor: Kranthi Varala

Why Python?
• Readability and ease-of-maintenance

• Python focuses on well-structured easy to read code
• Easier to understand source code…
• ..hence easier to maintain code base

• Portability
• Scripting language hence easily portable
• Python interpreter is supported on most modern OS’s

• Extensibility with libraries
• Large base of third-party libraries that greatly extend

functionality. Eg., NumPy, SciPy etc.

Python Interpreter

• The system component of Python is the
interpreter.

• The interpreter is independent of your code
and is required to execute your code.

• Two major versions of interpreter are currently
available:

• Python 2.7.X (discontinued 2020, legacy libraries)
• Python 3.9.X (newer features, better support)

Python execution model

Source
Code

Byte
Code

Execution
by PVM

• Source code is compiled into byte code
• Byte code is executed on the Python Virtual Machine
• Byte code is regenerated every time source code OR

the python version on the machine changes.
• Byte code generation saves repeated compilation

time.

Script vs. command line
• Code can be written in a python script that is

interpreted as a block.
• Code can also be entered into the Python

command line interface.
• You can exit the command line with Ctrl-z on

windows and Ctrl-d on unix
• For complex projects use an IDE (For example,

PyCharm, Jupyter notebook).
• PyCharm is great for single-developer projects
• Jupyter is great sharing code and output with

markup

First script

• This is the command line interface
• Simply type in the command and the output, if any,

is returned to the screen.
• May also be written as a script:

Variables and Objects

• Variables are the basic unit of storage for a
program.

• Programs perform operations on variables and
alter or fill in their values.

• Objects are higher level constructs that include
one or more variables and the set of operations
that work on these variables.

Classes vs. Objects

• Every Object belongs to a certain class.
• Classes are abstract descriptions of the

structure and functions of an object.
• Objects are created when an instance of the

class is created by the program.
• For example, "Fruit" is a class while an "Apple"

is an object.

What is an Object?

• Almost everything is an object in Python, and it
belongs to a certain class.

• Python is dynamically and strongly typed:
• Dynamic: Objects are created dynamically when

they are initiated and assigned to a class.
• Strong: Operations on objects are limited by the

type of the object.
• Every variable you create is either a built-in

data type object OR a new class you created.

Core data types (class)

• Numbers
• Strings
• Lists
• Dictionaries
• Tuples
• Files
• Sets

Numbers
• Can be integers, decimals (fixed precision), floating

points (variable precision), complex numbers etc.
• Simple assignment creates an object of number type

such as:
• a = 3
• b = 4.56

• Supports simple to complex arithmetic operators.
• Assignment via numeric operator also creates a

number object:
• c = a / b

• a, b and c are numeric objects.
• Try dir(a) and dir(b) . This command lists the functions

available for these objects.

Strings
• A string object is a 'sequence', i.e., it’s a list of items

where each item has a defined position.
• Each character in the string can be referred, retrieved

and modified by using its position.
• This order id called the 'index' and always starts with 0.

Strings … continued
• String objects support concatenation and repetition

operations.

Lists

• List is a more general sequence object that
allows the individual items to be of different
types.

• Lists have no fixed size and can be expanded
or contracted as needed.

• Items in list can be retrieved using the index.
• Lists can be nested i.e., you can have a list of

lists.

Lists

• Simple list:

• Nested list:

Dictionaries
• Dictionaries are unordered mappings of 'Name : Value'

associations.

• Intended to approximate how humans remember
associations.

Files
• File objects are built for interacting with files on the

system.
• Same object used for any file type.
• User has to interpret file content and maintain integrity.

Mutable vs. Immutable

• Numbers, strings and tuples are immutable i.,e
cannot be directly changed.

• Lists, dictionaries and sets can be changed in
place.

Object from Slide 15

Tuples

• Tuples are immutable lists.
• Maintain integrity of data during program

execution.
• For example,

• input data from the user that SHOULD NOT be
modified until the end of the program.

• Local (in memory) copy of a database.

Sets

• Special data type introduced since Python 2.4
onwards to support mathematical set theory
operations.

• Unordered collection of unique items.
• Set itself is mutable, BUT every item in the set

has to be an immutable type.
• So, sets can have numbers, strings and tuples

as items but cannot have lists or dictionaries as
items.

Summary
• Python interpreter executes byte code which is

generated from your source code.
• Variables in Python are objects that are in turn

instances of a pre-defined class.
• Variables are dynamically and strongly typed.
• Python supports a set of core data types (i.e., classes).
• Numbers, strings and tuples are immutable data types,

while lists, dictionaries and sets are mutable datatypes.

