
Tuples, Dictionaries 
and Sets

HORT 530
Lecture 11

Instructor: Kranthi Varala



Core data types

• Numbers
• Strings
• Lists
• Tuples
• Dictionaries
• Files
• Sets



Tuples
• Tuples are immutable general sequence 

objects that allows the individual items to be of 
different types.

• Equivalent to lists, except that they can’t be 
changed.



Tuples

• Tuple.count(value) : Returns number of occurrences of 
value.

• Tuple.index(value,[start,stop]) : Returns first index of 
value.

• Typically used to maintain data integrity within the 
program.

Even single elements need a comma 

Parentheses () are optional



Dictionaries
• Dictionaries are unordered collections of objects, 

optimized for quick searching.
• Instead of an index, objects are identified by their ‘key’.
• Each item within a dictionary is a ‘key’:’value’ pair.
• Equivalent to hashes or associative arrays in other 

languages.
• Like lists and tuples, they can be variable-length, 

heterogeneous and of arbitrary depth.
• ’Keys’ are mapped to memory locations by a hash 

function



Hash function

• A hash function converts a given key value into 
a ‘slot’ where its value will be stored.

• A hash function always takes a fixed amount of 
time and always returns the same slot for the 
same ‘key’.

• When program searches for a ‘key’ in the 
dictionary, the slot it should be in is calculated 
and the value in it, if any, is returned.

• Creating hashes is expensive, searching is 
cheap.



Hash collisions

• When a new key "collides" with an existing key slot, Python uses a probing 
sequence to look for another close slot that is empty.

• As number of collisions increase this becomes slower and slower.
• When hash table is 2/3 full python creates a new hash table that is n*4.

Image credit: http://www.laurentluce.com/posts/python-dictionary-implementation/



Dictionaries



Dictionaries: Common Methods

• D.keys() : List of keys
• D.values() : List of values
• D.clear() : remove all items
• D.update(D2) : Merge key values from D2 into D. 

NOTE: Overwrites any matching keys in D.
• D.pop(key) : returns the value of given key and 

removes this key:value pair from dictionary.



Looping over Tuples and Dictionaries



Sets
• Unordered collection of ONLY immutable 

objects. Set itself is mutable.
• Support operations from set theory e.g., union, 

intersection etc.



Set operations
• mySet.add(element) #Add element to set if absent
• mySet.update(newSet) #Add new elements from newSet
• mySet.remove(element) #Remove element if present
• mySet.clear() #Empty the set 
• len(mySet) #returns size of set
• X in mySet #returns True if x is in mySet
• X not in mySet #returns True if x is not in mySet
• mySet.union(t) #returns new set with elements 

present in one or both sets
• mySet.intersection(t) #new set with elements in both sets



Intersection A & B Symmetric 
difference A ^ B

Union A | B Difference A - B



Summary: Tuples vs. Dictionaries vs. Sets

• All three data types store a collection of items.
• Tuples and Dictionaries allow nesting, heterogeneity 

and arbitrary depth.
• Choice of data type depends on intended use:

• Tuples: Best suited for maintaining a copy of the collection 
that will not be accidentally changed during the program.

• Dictionary : Best suited for storing labeled items, especially in 
collections where frequent searching is required.

• Sets : Best suited for unordered collections of items that 
benefit from set theory operations.



Data structures

• Lists, Dictionaries, Tuples and Sets are all 
types of data structures.

• A data structure is a defined way to handle a 
collection of items.

• There are two types of operations one can do 
on a data structure: 1. Queries and 2. Updates

• Different data structures are optimized for 
different kinds of data as well as for the 
expected kind of operation on that data.



Lists

• Lists are useful for types of data that can be 
numerically indexed. 

• Think of them as queues, items in the queue 
are processed in the order they were received.

• Lists can be changed or extended, items within 
it do not have to be unique.

• Separate lists can be linked with the index, but 
you are responsible for maintaining data 
integrity when making changes to one or more 
list.



Dictionaries

• Dictionaries are the most efficient data 
structures for quick lookups.

• Need a logical association between key and 
pair.

• BUT, as the size of the dictionary increases its 
lookup speed deteriorates (Hash collisions).

• They are easy to update since order is not 
important.



Sets

• Sets are best suited for storing unique items 
when the count of each item does not matter.

• Great for removing duplicates from a list, 
finding overlaps between two lists etc.

• Think of sets as valueless dictionaries, they 
have the same advantages and disadvantages 
as dictionaries.



Tuples

• Tuples are used when data integrity needs to 
be maintained.

• Tuples are also more memory efficient than 
lists because their exact size is known before 
hand.

• Tuples are most useful when a few linked 
characteristics of an object are read in and 
never changed. E.g., Geographic or genome 
coordinates.



How to pick a data structure

• Pick the data structure that is most reliable for 
your data.

• Pick the data structure most optimized for the 
operation you perform most often.

• Pick the data structure that performs well when 
the size of your data increases.

• Often, the best data structure is a combination 
of one or more types e.g., list of dictionaries, or 
dictionary of lists, 



How would you store this data?



How would you store this data?

Option 1: Optimized for finding gene IDs
Option 2: Optimized for finding genes that match GO term
Option 3: Most memory-efficient


