Tuples, Dictionaries
and Sets

HORT 530
Lecture 11
Instructor: Kranthi Varala

Core data types

 Numbers

« Strings

o |ists

e Tuples
 Dictionaries
* Files

» Sets

Tuples

* Tuples are immutable general sequence

objects that allows the individual items to be of
different types.

« Equivalent to lists, except that they can't be
changed.
>>> myTuple=('Q','a', 'bob',4.89)
>>> myTuple

('e', 'a', '"bob', 4.8899999999999997)
>>> myTuple[1]

a
>>> myTuple[1:3]
('a., 'bobl)

>>> geneT=('Chrl','TAIR10','gene',3631,5899,"'.','+','.','ID=AT1G0O1010")
>>> geneT
('Chril', 'TAIR10', 'gene', 3631, 5899, '.', '+', ' ' 1ID=AT1G0O1010"')

) x)

Tuples

« Tuple.count(value) : Returns number of occurrences of
value.

» Tuple.index(value,[start,stop]) : Returns first index of
value.

 Typically used to maintain data integrity within the
program.

S AT ()] —— Even single elements need a comma
>>> myTuple

0,)

>>> myTuple= —> Parentheses () are optional

>>> myTuple

9,)

Dictionaries

* Dictionaries are unordered collections of objects,
optimized for quick searching.

* Instead of an index, objects are identified by their ‘key’.
« Each item within a dictionary is a ‘key’:'value’ pair.

« Equivalent to hashes or associative arrays in other
languages.

* Like lists and tuples, they can be variable-length,
heterogeneous and of arbitrary depth.

« 'Keys’ are mapped to memory locations by a hash
function

Hash function

* A hash function converts a given key value into
a ‘slot’ where its value will be stored.

* A hash function always takes a fixed amount of
time and always returns the same slot for the
same ‘key'.

* When program searches for a ‘key’ in the
dictionary, the slot it should be in is calculated
and the value In it, if any, is returned.

 Creating hashes is expensive, searching is
cheap.

Hash collisions

table: size 8 table: size 8
key: 'a' hash('a’) & 7 > key: 'a' key: 'a’ hash('a') & 7 key: 'a’
value: 1 ¢ value: 1 value: 1 P -0 value: 1
key: 'b' 1 key: 'b' 1
value: 2 value: 2
key: 'c' key: 'c' key: 'c’ N key: 'c'
value: 3 > : value: 3 value: 3 z value: 3
key: 'z 3 key: 'b' key 4 3 key 'b'
value: 26)| value: 2 value: 26 value: 2
collision
key: 'z’
- 5
7 probing value: 26
Image credit: http://www.laurentluce.com/posts/python-dictionary-implementation/
7

When a new key "collides" with an existing key slot, Python uses a probing
sequence to look for another close slot that is empty.

As number of collisions increase this becomes slower and slower.

When hash table is 2/3 full python creates a new hash table that is n*4.

Dictionaries

>>> myDict={}

>>> myDict={"'name':'Bob"', 'surname':'Smith’', 'age':40}
>>> myDict

{'age': 40, 'surname': 'Smith', 'name': 'Bob'}

>>> myDict['name']

'"Bob’

>>> myDict['YOB'] = 1970

>>> myDict

{'age': 40, 'surname': 'Smith', 'name': 'Bob', 'YOB': 1970}
>>> myDict['name'] = 'Robert’

>>> myDict

{'age': 40, 'surname': 'Smith', 'name': 'Robert', 'YOB': 1970}

Dictionaries: Common Methods

* D.keys() : List of keys
» D.values() : List of values
 D.clear() : remove all items

« D.update(D2) : Merge key values from D2 into D.
NOTE: Overwrites any matching keys in D.

* D.pop(key) : returns the value of given key and
removes this key:value pair from dictionary.

Looping over Tuples and Dictionaries

>>> T = (1,'a',45,23.45, 'String')
>>> for x in T: print x

1
a
45

>>> myDict = {'a':"'1",'b":'2","'c':"'3'} |>>> for (key,value) in myDict.items():
>>> for key in myDict: e print(key,' ==> ',value)
print(Ckey,' ==> ', myDict[key])

(!av’ N !1!)
('a', ' = '1') ('C', ' |3|)
('C', ' = '3') ! RS 121
('b', ' |2|) (b -)

Sets

 Unordered collection of ONLY immutable
objects. Set itself is mutable.

« Support operations from set theory e.g., union,
Intersection efc.

>>> mySet=set('Example string')
>>> mySet
Set(['a', I I’ IEI’ lgl’ l1'l’ Iml’ I'Ll’ Inl, Ipl’ 'S', Irl’ Itl’ lxl’ Iel])
>>> mySet=set(1,2,3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: set expected at most 1 arguments, got 4
>>> mySet=set([1,2,3,4])
>>> mySet
set([1, 2, 3, 4])
>>> mySet={1,2,3,4}
>>> mySet
set([1, 2, 3, 4])

Set operations

* mySet.add(element) #Add element to set if absent

« mySet.update(newSet) #Add new elements from newSet
* mySet.remove(element) #Remove element if present

* mySet.clear() #Empty the set

* len(mySet) #returns size of set

« Xin mySet #returns True if x is in mySet

« X not in mySet #returns True if x is not in mySet
* mySet.union(t) #returns new set with elements

present in one or both sets
« mySet.intersection(t) #new set with elements in both sets

Symmetric
difference AMB

Union A | B Difference A- B

Intersection A & B

Summary: Tuples vs. Dictionaries vs. Sets

* All three data types store a collection of items.

* Tuples and Dictionaries allow nesting, heterogeneity
and arbitrary depth.

« Choice of data type depends on intended use:

« Tuples: Best suited for maintaining a copy of the collection
that will not be accidentally changed during the program.

 Dictionary : Best suited for storing labeled items, especially in
collections where frequent searching is required.

e Sets : Best suited for unordered collections of items that
benefit from set theory operations.

Data structures

* Lists, Dictionaries, Tuples and Sets are all
types of data structures.

* A data structure is a defined way to handle a
collection of items.

* There are two types of operations one can do
on a data structure: 1. Queries and 2. Updates

 Different data structures are optimized for
different kinds of data as well as for the
expected kind of operation on that data.

Lists

* Lists are useful for types of data that can be
numerically indexed.

* Think of them as queues, items in the queue
are processed in the order they were received.

* Lists can be changed or extended, items within
it do not have to be unique.

» Separate lists can be linked with the index, but

you are responsible for maintaining data
integrity when making changes to one or more

list.

Dictionaries

* Dictionaries are the most efficient data
structures for quick lookups.

* Need a logical association between key and
pair.

« BUT, as the size of the dictionary increases its
lookup speed deteriorates (Hash collisions).

* They are easy to update since order is not
Important.

Sets

« Sets are best suited for storing unique items
when the count of each item does not matter.

« Great for removing duplicates from a list,
finding overlaps between two lists etc.

* Think of sets as valueless dictionaries, they
have the same advantages and disadvantages
as dictionaries.

Tuples

* Tuples are used when data integrity needs to
be maintained.

» Tuples are also more memory efficient than

lists because their exact size is known before
hand.

* Tuples are most useful when a few linked
characteristics of an object are read in and
never changed. E.g., Geographic or genome
coordinates.

How to pick a data structure

* Pick the data structure that is most reliable for
your data.

* Pick the data structure most optimized for the
operation you perform most often.

 Pick the data structure that performs well when
the size of your data increases.

 Often, the best data structure is a combination
of one or more types e.g., list of dictionaries, or
dictionary of lists,

How would you store this data?

"glossary": {
"title": "example glossary",
"GlossDiv": {
o A 1 B
"GlossList": {
"GlossEntry": {
"ID": "SGML",
"SortAs": "SGML",
"GlossTerm": "Standard Generalized Markup Language",
"Acronym": "SGML",
"Abbrev": "ISO 8879:1986",
"GlossDef": {
"para": "A meta-markup language, used to create markup languages such as DocBook.",
"GlossSeeAlso": ["GML", "XML"])
Yo

"GlossSee": "markup"

How would you store this data?

{"NP_414543.1":["G0:0005737","G0:0019202","G0:0016616", "G0O:0009092" , "G0:0004412" ,
"G0:0044424" ,"G0:0009089" , "G0:0046451","G0:0009085", "G0:0016774" , "GO0 :0009070" , "GO
:0004072" , "G0:0009090"],

"NP_414544.1":["G0:0019202","G0:0006566" ,"G0:0016773","G0:0005829", "G0:0004413", "
G0:0044444" ,"G0:0009067", "G0:0009088" , "G0:0009069" , "G0:0009092"],

"NP_414545.1":["G0:0006566" , "G0:0016838", "G0:0005829" , "G0:0044444" ,"G0:0009067", "
G0:0009088", "G0:0004795"],
"NP_414547.1":["G0:1901700", "G0O:0005829", "G0:0044444" ,"G0:0033194","G0:0006979"],
"NP_414548.1":["G0:0006810","G0:0016020", "GO:0044464" ,"G0:0071944" , "GO :0005886" , "
GO:0055085"]

}

Option 1: Optimized for finding gene IDs
Option 2: Optimized for finding genes that match GO term
Option 3: Most memory-efficient

