
Lists, Loops and
Conditionals

HORT 530
Lecture 10

Instructor: Kranthi Varala

Core data types

• Numbers
• Strings
• Lists
• Dictionaries
• Tuples
• Files
• Sets

Lists

• A List is a general, sequence object where the
individual items in the list can be different types.
I.e., the same list can contain integers, floats,
strings etc..
• Lists are mutable, i.e., a list can be changed without

having to create a new list object

Lists: Common Methods

• L.append() : Adds one item to the end of the list.
• L.extend() : Adds multiple items to the end of the list.
• L.pop(i) : Remove item 'i' from the list. Default:Last.
• L.reverse() : Reverse the order of items in list.
• L.insert(i,item): Inserts 'item' at position i.
• L.remove(item) : Finds 'item' in list and deletes it from the

list.
• L.sort(): Sorts the list in- place i.e., changes the sequence in

the list. (Sorting mixed data types only works on python2)

MultiDimensional Lists
• Lists are of arbitrary length and can easily be nested.

• Simplest nested lists are 2 –dimensional matrices.
• my2DList = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

my2DList

0

1

2

3

0 21 3

MultiDimensional Lists
• Nested Lists need not be homogeneous.
• my2DList = [[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,16]]

1

2

3

a

5

6

7

cat

9

10

e

12

beta

14

15

16

my2DList

0

1

2

3

0 21 3

Arbitrary dimensional Lists
• Nested Lists need not be of the same length.
• my2DList = [[1,2,3,'a'],[5,6,7],[9,10,'e',12,'cat'],['beta',14,15,16]]

1

2

3

a

5

6

7

9

10

e

12

cat

beta

14

15

16

my2DList

0

1

2

3

0 21 3

Arbitrary dimensional Lists
• Nested Lists can have arbitrary depth as well.

• subL = [['p','q'],['r','s']]
• my2DList = [[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,subL]]

1

2

3

a

5

6

7

cat

9

10

e

12

beta

14

15

my2DList

0

1

2

3

p q

r s

0 21 3

0 1

0

1

Lists as sequences of references
• myList = ['Name',[Month,Date,Year],Address,[Home,Cell]]

Str [Ref] Str [Ref]

int

int

int

Str

Str

Lists as sequences of references
• myList = ['Name',[Month,Date,Year],Address,[Home,Cell]]

[Ref] [Ref] [Ref] [Ref]

int

int

int

Str

Str

Str Str

Lists are mutable!!

>>>subL = [['p','q'],['r','s']]
>>>myList = [[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,subL]]

>>>myList
[[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,[['p','q'],['r','s']]]]

>>>subL[0][1]
'q'
>>>subL[0][1] = 'z'
>>>myList
[[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,[['p','z'],['r','s']]]]

Working with Lists

• Lists are a great way to store values in an ordered
way. E.g., First Names.
• Multiple lists with related values can be stored and

retrieved based on index. E.g., List1 -> First Names,
List2->Last Names.
• When working with lists, we need a quick and

robust way to iterate over them, i.e., retrieve each
item separately.
• Loops with conditional statements are the most

common way to iterate over lists.

Relational Operators

• These operators compare the value of two
'expressions' and returns a Boolean value.

• Beware of comparing across data types, especially
when reading values in from command line or files.

Relational Operators
== equal True if expressions are equal

!= not equal True if expressions are not equal

> Greater than True if left is greater than the right
< Less than True if left is less than the right

>= greater than OR equal
<= less than OR equal

is identity True if the left is the same object as right
in contains True if the object on left is contained in object

on right (Useful for finding values in list)

Assignment Operators
A += B increase A by value of B

A -= B decrease A by value of B

A *= B multiply A by B and assign value to A
A /= B divide A by B and assign value to A

A **=B raise value of A to the power of B
A %= B modulus of A by B, assigned to A

A //= B floor of A divided by B, assigned to A

• String context:
• S1 += S2 add string on right to the one on left
• S1 *= A Make A copies of S1 and concatenate them to S1

Boolean Operators
Combines two or more statements that return a Boolean value.

A and B True if both A and B are true

A or B True if either A or B is true
not A Reverse the Boolean given by A

xor(A,B) True if only one of A or B is True

A B A and B A or B Not A xor(A,B)

TRUE TRUE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE FALSE

General Python Syntax rules
• End of line is end of statement
• Statements at the same indentation level are in the

same block (e.g., within a loop or condition)
• End of indentation is end of block
• Exceptions:

• Semi colon ; separates statements on the same line

• Single line blocks are allowed without indentation

Branching logic
• Used to implement alternate paths for the logic

flow.

https://upload.wikimedia.org/wikipedia/commons/4/44/LampFlowchart.png

If/elif/else statements

if test1:
statement 1

elif test2:
statement 2

else:
statement 3

• Both the elif and else blocks are optional.

if/elif/else statements

Lamp flowchart with if/else

Accepts input
from user, as a
string

Truth and Boolean tests in Python

• All objects in python have an inherent true or false
value.
• Any nonempty object is true.

• For Integers : Any non-zero number is true

• Zero, empty objects and special object 'None' are
false.
• Comparisons return the values True or False

Loops/Iterations

• A loop is a block of statements that repeats all the
statements within the block until the exit condition
is met.
• Statements in a loop are defined by indenting them

relative to the loop start.
• Loop ends when indentation ends.
• Python has two forms of loops: for and while
• E.g. >>> for x in range(10)
• E.g. >>>while (A==10)

while loops
• while condition:

statement 1
statement 2
.
.

• Most generic form of loop, that checks whether the
condition is true at the start of each iteration.
• Expects the condition to become false at some point

during the iterations of the loop.
• If condition is never changed, this creates an 'infinite'

loop. i.e., the program will get stuck in this loop for
ever.

Example while loops

Altering while loops

• Normally, a loop ends only when exit condition is
met.
• break statement forces the current loop to exit.
• continue statement skips the rest of the block and

goes to the next iteration of the loop.
• pass statement is a placeholder for empty blocks.

Altering while loops

for loops
• for item in sequence:

statement 1
statement 2
.
.

• Generic iterator for items in a ordered sequence such
as lists, tuples etc.
• On each iteration retrieves one item from the list and

assigns it to the variable specified.
• Automatically moves to the next item in the order.
• Value of variable may be altered within the for loop,

but change is not made in the list.

for loops

Looping over Strings and Lists

• List is a general sequence object while String is a
character sequence object.
• Both can be iterated over by a for loop:

Looping over lists with and without index

• Looping with an index allows accessing the item
within the list and changing it.

Nested Loops

• Loops can be nested just like the if/else statements.

• Indentation is again the key to creating nested loops.

• In a 2-level nested loop with x iterations on the outer loop
and y iterations in the inner loop:
• All statements in the outer loop will be executed x times
• All statements in the inner loop will be executed x*y times

MultiDimensional Lists
my2DList = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

my2DList

0

1

2

3

0 21 3

MultiDimensional Lists
my2DList = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

for x in range(len(my2DList)):

insideList=my2DList[x]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

my2DList

0

1

2

3

0 21 3

MultiDimensional Lists
my2DList = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

for x in range(len(my2DList)):

for y in range(len(my2DList[x])):

print my2DList[x][y]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

my2DList

0

1

2

3

0 21 3

Arbitrary dimensional Lists
subL = [['p','q'],['r','s']]

my2DList = [[1,2,3,'a'],[5,6,7,'cat'],[9,10,'e',12],['beta',14,15,subL]]

1

2

3

a

5

6

7

cat

9

10

e

12

beta

14

15

my2DList

0

1

2

3

p q

r s

0 21 3

0 1

0

1

Loop1

Loop2
Loop3

Summary: Lists, Conditions and loops

• Lists : Best suited for ordered collections of items where the
order or the items themselves may need to be changed.

• Lists are mutable, heterogenous and arbitrarily sized.
• Conditional statements with the proper comparison and

boolean operators allow the creation of alternate execution
paths in the code.

• Loops allow repeated execution of the same set of
statements on all the objects within a sequence.

• Using an index based for loop is best suited for making
changes to items within a list.

• Always ensure that your exit condition will be met.

