Introduction to
Programming: Logic,
Variables and Objects

HORT 530
Lecture 7
Instructor: Kranthi Varala

What is a program?

A set of instructions to the computer that perform a
specified task in a specified manner.

* The task of writing a functional, error-free and cohesive
set of instructions is called programming.

« Two major components of Programming:
* Logic — What are my set of instructions?
« Syntax — How do | convey them to the CPU?

Logic

* Programming logic is an exercise in how to break down
a complex real-world problem into a set of
mathematical notations.

 Independent of programming language used.
 Divide a complex task into a series of simpler tasks.

 Divide each task into a set of simple, sequential
iInstructions.

« Arrange simple tasks in the most efficient order to
accomplish complex task.

Syntax

* Programming syntax is a predetermined set of rules in
which the instructions need to be provided.

» Usually unique to each programming language.

* Once the logic is established, convert the instructions
Into the syntax prescribed.

« Constraints imposed by the syntax may require
adjusting the logic.

Programming languages

« Simply put, a language understood by the computer.

« Computers are not truly intelligent (Yet!). So, the
Instructions need to be extremely detailed and precise.

At the lowest hardware level, a computer operates on
bits (1 and 0), called binary code.

* Modern programming languages are closer to how
humans think/talk.

Low level vs. High level languages

Programming languages range from low level (close to
binary) to high level (close to human language).

Order of languages:
High-level --> Assembly --> Machine/Binary

Low-level languages are extremely hard to learn and lack
portability, but make optimal use of hardware.

High-level languages are easier to learn and generalize, but
are poorer at using hardware resources.

High-level languages

« Common high-level languages are Java, C, C++,
Python, Perl etc.

« Code written in a high-level language is interpreted and
converted into low-level language by an intermediate
layer that is either a compiler or and interpreter.

* The compiler and interpreter differ in the timing of
generation of machine code.

Compiled vs Interpreted

« Compiled languages * Interpreted languages
E.g., C, C++, Fortran, E.g., Python, Perl, Ruby,
Java etc. Javascript etc.

Programmer Programmer
Source Code Source Code

Compiler

Binary (.exe) Interpreter

Results

Compiler

* Converts entire source code into machine code at the
compilation stage.

« Optimizes the source code to use hardware resources
better.

« Compilation process can be lengthy and
computationally intensive, depending on the source
code.

« Compilers can be told to generate different machine
codes for different hardware platforms e.g., Mac vs PC
vs Linux.

« Optimized machine code is faster, but not portable.

Interpreter

* Interpreter resides on the target machine and accepts
source code as input.

« Reads through the code one line at a time and
converts instructions in that line to machine code.

* Lacks the optimization step included in compilers and
hence program execution is often slower than compiled
programs.

« Source code is highly portable, since the interpreter is
integrated in the target platform.

« Languages that rely on interpreters are often called
“Scripting languages”.

Machine code is the ultimate result

By BrokenSphere (Own work) [GFDL (http:// .gnu.org/copyleft/fdl.html) or CC BY-
SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

All source code HAS to be eventually converted into machine code

Stages of programming

* Develop the logic
/ * Write code

/ » Compile/Interpret \
\\ » Test with data /
* Find bugs in code

Pseudocode

A high level description of the problem and the
programmatic solution that helps develop the
overall logic and the subdivision of tasks.

* Informal way of writing code that does not
worry about the syntax of the programming
language.

 Follows a loose set of rules that allow logical
grouping of functions.

Pseudocode Example

* Problem: Calculate the average length of all
protein sequences in a file.

* PseudoCode (Simplest):
* Read all Protein sequences
 Calculate length of each sequence
 Calculate the mean of all lengths

Pseudocode Example

* Problem: Calculate the average length of all
protein sequences.

* PseudoCode (Simple):
* Open protein sequence file

* Loop over protein sequences
 Read each sequence
 Calculate length of current sequence
* Add length to sum variable

 Calculate the mean length by dividing sum/ no. of
sequences

Pseudocode Example

* PseudoCode (Detailed):

« Create mean length variable; set to O
Create No. of sequences variable; set to O
Create sum variable; set to O

Ask user input for name of sequence file
Open protein sequence file (if exists)

Loop over protein sequences
* Read each sequence
» Calculate length of current sequence
« Add sequence length to sum variable
» Increment No. of sequences by 1
Calculate value of mean as Sum/No. of sequences.

Output value of mean

Other examples

* Find all 5 letter words in a file and print only
those that start with a vowel.

« Exchange the value of 2 variables (integers)
without using a third variable.

* Print the following patterns:
1. * 2. * 3. *

** ** **

k *%k* *k*

*k*k*%k *k*k*%k *k*k*k

kkk *kkk* *kkk*

Variables and Objects

 Variables are the basic unit of storage for a program.
 Variables can be created and destroyed.

At a hardware level, a variable is a reference to a
location in memory.

* Programs perform operations on variables and alter or
fill in their values.

* Objects are higher level constructs that include one or
more variables and the set of operations that work on
these variables.

* An object can therefore be considered a more complex
variable.

Data types

* All variables are empty when created.

 Since variables have no implicit value, they can
store many different forms of values.

« Example values of variable:

* Var = TRUE #Boolean
* Var = 523243 #integer
e Var =42.2524 #Float
 Var = Hi there #3tring

e Var2 = Reference to Var #Reference

Implicit (Weak) vs. Explicit (Strong) data types

« Some languages require each variable to be explicitly
defined as a single data type, e.g. integer, float, string etc.

 Explicit data typing prevents nonsensical operations such as
multiplying two strings.

« Compiled languages, such as C, Java etc., typically use
explicit data types, since it allows improved optimization.

« Other languages allow all variables to be any one of the
implicit data types.

« With implicit data typing, a variable can change its data type
within the same program.

« Scripting languages, such as Perl often use implicit (i.e.,
weak) data types.

Documentation

* Always document your code with as much detail as
possible.

 For each variable, when created, write a comment
explaining the intended use of the variable.

* For each loop, write a comment describing what the
loop is expected to iterate over.

 For each function, write a comment explaining the
expected input and expected output of function.

* For each stage of the program, write a long comment
describing the current stage, expected input and
outcome of this stage.

Summary

* Programming languages can be either compiled or
iInterpreted.

« Compiled code is faster but non-portable, while
iInterpreted code is very portable.

* Programming has two stages: 1. Establishing the logic
and 2. Writing the code

« Pseudocode is a great way to establish logic before
getting bogged down by syntax.

* The basic data units in programming are variables and
objects.

« Languages may have strong or weak typing for
variables.

