Shell scripting and
system variables

HORT 530
Lecture 5
Instructor: Kranthi Varala

Command-line operations

 All commands so far are run one at a time.

« Redirection and pipes allow combining a few
commands together into a single pipeline.

 Lacks logical complexity, such as ability to make
decisions based on input / values in file.

 Certain repetitive tasks are tedious to user.

« All commands are being sent to and interpreted by the
‘shell’.

Shell scripts

» Shell scripts are at the simplest level a series
of commands.

* Not meant for computational or memory
intensive tasks. Commonly used as "glue
code".

* Calls on individual programs, such as grep,
sed, sort etc. to do the heavy lifting.

» Two reasons to write a script:
« Ease-of-use e.g., automate repetitive tasks
« Reproducibility

Terminology

* Terminal: Device or Program used to establish
a connection to the UNIX server

» Shell: Program that runs on the server and
interprets the commands from the terminal.

« Command line: The text-interface you use to
interact with the shell.

Shells

» Shell itself is a program on the server and can
be one of many varieties

1. bash : Most popular shell, default on most Linux
systems. Installed on all Linux systems

2. zsh : A bash-like shell with some extra features.
E.g., support for decimals, spelling correction etc.

3. tcsh : A C-like syntax for scripting, supports
arguments for aliases etc.

* We will work with bash shell scripting since it is
the most common and supported shell.

Environment variables

A variable is a container that has a defined value.

* It's called a variable because the value contained
Inside it can change.

 Variables allow changing a part of the command that is
to be executed.

« Every shell has a set of variables, called environment
variables, attached to it. You can list them by using the
command env

* E.g., the variable SHELL contains the path to the
current shell.

Working with environment variables

 Set the value of a variable as follows:
$ FOO=BAR

* Retrieve the value of a variable as follows:
S echo SFOO

Example Environment variables

* On scholar as of today: using the command
env In my bash shell shows 142 environment
variables.

« Examples:

HOME=/home/kvarala

SHELL=/bin/bash

HOSTNAME=scholar-fe00.rcac.purdue.edu

HISTSIZE=1000

RCAC_SCRATCH=/scratch/scholar/kvarala

Environment vs. Shell variables

* Environment variables are ‘global’ i.e., shared by all
shells started AFTER the variable is defined.

« Shell variables are only present in the shell in which
they were defined.

* Environment variables are inherited by child shells but
shell variables are not.

« Shell variable can be made an environment variable by
using export command.

FOO=BAR
export FOO

Environment vs. Shell variables

kvarala@scholar-fe04: Dl I YN8 FOO defined in the environment
kvarala@scholar-fe04:

kvarala@scholar-fe04: FOO2=BAR2 FOO2 defined in shell
kvarala@scholar-fe04:

kvarala@scholar-fe04: bash Start a child shell
kvarala@scholar-fe04:

kvarala@scholar-fe04: echo SFOO echoes value of FOO

BAR

kvarala@scholar-fe04:

kvarala@scholar-fe04: echo SF002 empty

kvarala@scholar-fe04: I

Script creates its own Shell

A script is always executed in its own shell, i.e.,
when you execute a shell script it starts a new
child shell within the shell you executed the
program from.

Login shell Child shell

$ chmod 755 myscript.sh Execute commands in
$./myscript.sh myscript.sh

Hello World! Send output to parent
$ shell.

Shell Scripting

« Commands within a shell script may or may not
be dependent on each other.

« Variables, hence their values, can be
transferred from one command to another.

» Shell scripts support:
 Variables
« Conditions
* Loops
* Functions

Example Shell Script

* First example script: Hello world!

#! /bin/bash
This 1s our first shell script!!
echo "Hello World!"

Variables in Shell Scripting

» Variables are containers that store a value.

 All variables created in a script are shell
variables.

» A script can access the environment variables
In addition to its own shell variables.

 Variable can store any kind of value i.e., string
or integer or floating point number etc.

Variables in Shell Scripting

INT=1

FLOAT=1.5
STR=hello
STR2="hello world"
RND=asdf2341.sfe

echo SINT
echo "Value of FLOAT 1is SFLOAT"
echo "$STR is a string"

echo "SRND 1is non-sensical"

Example Shell Script

» Second example script: 1sScr.sh

#! /bin/bash

List contents of scratch

cd SRCAC_SCRATCH

ls -1

» Make script executable, place it in PATH.

Special shell variables

» Special Variables

. $# =
. $@ =
. $0 =
« $1,9%2.. =
. $7 =

No. of parameters given to script
List of parameters given to script
Name of current program (script)
Parameter 1, 2 and so on..

Exit value of last command run

* These variables are shell variables and only
valid to the current shell.

Even more special characters

* * matches every character, just as in regular
expressions.

* S0, Is *txt in a script will list all files whose
name ends in txt.

* \is an escape character which tells the shell to
not interpret the character after it.

* \ is commonly used to escape the special
characters such as *, $ etc.

Example Shell Script

* Third example script: 1sScr.2.sh

#! /bin/bash
List contents of scratch

echo "Executing script : \"SO\" with
S# parameters"

cd SRCAC_SCRATCH
ls -1
» Make script executable, place it in PATH.

Command Blocks

* Ablock is a set of commands that are grouped
together for execution.

« Two fundamental blocks in scripting:
* Loops
Repeat the commands in the block until the exit
condition is met.

e Conditions
Evaluate condition and if true execute commands in
the block.

Loops

* Two kinds of loops supported in bash:

* for loop
operates on a list and repeats commands in the
block for each element on the list

* while loop
repeats commands in the block until an exit
condition is met.

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in [list];
do
commands

done

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in 123 4567 89 10;
do

echo "Value of x is : $x"
done

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in $(1s);
do
echo "Found file S$x"

done

while loops

* while loop
repeats commands until exit condition is met

while condition
do

echo "Value of x 1is : S$x"
done

while loops

* while loop

repeats commands until exit condition is met
X=10 < Initiate variable
while [Sx -gt 0 T Check value of variable
do

echo "Value of x s : Sx"

let x=x-1+ Change value of variable

done

Condition blocks

e Condition blocks test for a condition and if TRUE
execute one block and if FALSE execute another.

if [condition]
then

Block 1
else

Block 2
fi

Condition blocks

e Condition blocks test for a condition and if TRUE
execute one block and if FALSE execute another.

if [$1 -gt 0]
then

echo "$1 is greater than 0"
else

echo "S1 is smaller than 1"
f4

breaking loops

* Break command asks the shell to exit the loop

X=10
while [1]
do
echo "Value of x is : S$x"
X=X—-1
if [Sx == 0]
then
break
fi

done

Run external commands

 backticks are a way to send a command to the
shell and capture the result :

files= 1s *txt’
echo Sfiles

* Another way istouse $() :
files=S(1ls xtxt)
echo S$files

Functions in shell scripting

» Functions separate logical blocks of code.

* Typically a function contains a piece of code
that is used repeatedly in a script.

» Code in a function is only executed when a
function is "called”.

* Functions can “receive” arguments and "return”
values.

* Functions allow code portability.

Functions in shell scripting

#!/bin/bash

fileSize(){
wc -1 $1 | awk '{print $1}'

}

for x in $(1s);

do
fileSize $x #Function output sent to STDOUT
size=$(fileSize $x) #Capture function output
echo -e "Found file $x\t with Ssize lines."

done

Summary

« Shell scripts allow easy automation and
reproducibility.

« Shell scripts support basic programming tenets
such as Variables, Conditions, Loops and
Functions.

« Shell scripting is a useful way to combine the
various simple but powerful command-line
tools.

* Functions can be copied from one script to
another to allow reuse of code.

