
Shell scripting and
system variables

HORT 530
Lecture 5

Instructor: Kranthi Varala

Command-line operations
• All commands so far are run one at a time.
• Redirection and pipes allow combining a few

commands together into a single pipeline.
• Lacks logical complexity, such as ability to make

decisions based on input / values in file.
• Certain repetitive tasks are tedious to user.
• All commands are being sent to and interpreted by the

‘shell’.

Shell scripts

• Shell scripts are at the simplest level a series
of commands.

• Not meant for computational or memory
intensive tasks. Commonly used as "glue
code".

• Calls on individual programs, such as grep,
sed, sort etc. to do the heavy lifting.

• Two reasons to write a script:
• Ease-of-use e.g., automate repetitive tasks
• Reproducibility

Terminology

• Terminal: Device or Program used to establish
a connection to the UNIX server

• Shell: Program that runs on the server and
interprets the commands from the terminal.

• Command line: The text-interface you use to
interact with the shell.

Shells

• Shell itself is a program on the server and can
be one of many varieties

1. bash : Most popular shell, default on most Linux
systems. Installed on all Linux systems

2. zsh : A bash-like shell with some extra features.
E.g., support for decimals, spelling correction etc.

3. tcsh : A C-like syntax for scripting, supports
arguments for aliases etc.

• We will work with bash shell scripting since it is
the most common and supported shell.

Environment variables
• A variable is a container that has a defined value.
• It’s called a variable because the value contained

inside it can change.
• Variables allow changing a part of the command that is

to be executed.
• Every shell has a set of variables, called environment

variables, attached to it. You can list them by using the
command env

• E.g., the variable SHELL contains the path to the
current shell.

Working with environment variables

• Set the value of a variable as follows:
$ FOO=BAR

• Retrieve the value of a variable as follows:
$ echo $FOO

Example Environment variables

• On scholar as of today: using the command
env in my bash shell shows 142 environment
variables.

• Examples:
HOME=/home/kvarala
SHELL=/bin/bash
HOSTNAME=scholar-fe00.rcac.purdue.edu
HISTSIZE=1000
RCAC_SCRATCH=/scratch/scholar/kvarala

Environment vs. Shell variables

• Environment variables are ‘global’ i.e., shared by all
shells started AFTER the variable is defined.

• Shell variables are only present in the shell in which
they were defined.

• Environment variables are inherited by child shells but
shell variables are not.

• Shell variable can be made an environment variable by
using export command.

FOO=BAR
export FOO

Environment vs. Shell variables
FOO defined in the environment

FOO2 defined in shell

Start a child shell

echoes value of FOO

empty

Script creates its own Shell

• A script is always executed in its own shell, i.e.,
when you execute a shell script it starts a new
child shell within the shell you executed the
program from.

$ chmod 755 myscript.sh
$./myscript.sh
Hello World!
$

Execute commands in
myscript.sh
Send output to parent
shell.

1
Login shell Child shell

2

Shell Scripting

• Commands within a shell script may or may not
be dependent on each other.

• Variables, hence their values, can be
transferred from one command to another.

• Shell scripts support:
• Variables
• Conditions
• Loops
• Functions

Example Shell Script

• First example script: Hello world!

#!/bin/bash
This is our first shell script!!
echo "Hello World!"

Variables in Shell Scripting

• Variables are containers that store a value.
• All variables created in a script are shell

variables.
• A script can access the environment variables

in addition to its own shell variables.
• Variable can store any kind of value i.e., string

or integer or floating point number etc.

Variables in Shell Scripting
INT=1
FLOAT=1.5
STR=hello
STR2="hello world"
RND=asdf2341.sfe

echo $INT
echo "Value of FLOAT is $FLOAT"
echo "$STR is a string"
echo "$RND is non-sensical"

Example Shell Script

• Second example script: lsScr.sh

#!/bin/bash
List contents of scratch
cd $RCAC_SCRATCH
ls –l
• Make script executable, place it in PATH.

Special shell variables

• Special Variables
• $# = No. of parameters given to script
• $@ = List of parameters given to script
• $0 = Name of current program (script)
• $1, $2.. = Parameter 1, 2 and so on..
• $? = Exit value of last command run

• These variables are shell variables and only
valid to the current shell.

Even more special characters

• * matches every character, just as in regular
expressions.

• So, ls *txt in a script will list all files whose
name ends in txt.

• \ is an escape character which tells the shell to
not interpret the character after it.

• \ is commonly used to escape the special
characters such as *, $ etc.

Example Shell Script
• Third example script: lsScr.2.sh

#!/bin/bash
List contents of scratch
echo "Executing script : \"$0\" with
$# parameters"
cd $RCAC_SCRATCH
ls –l
• Make script executable, place it in PATH.

Command Blocks

• A block is a set of commands that are grouped
together for execution.

• Two fundamental blocks in scripting:
• Loops

Repeat the commands in the block until the exit
condition is met.

• Conditions
Evaluate condition and if true execute commands in
the block.

Loops

• Two kinds of loops supported in bash:
• for loop

operates on a list and repeats commands in the
block for each element on the list

• while loop
repeats commands in the block until an exit
condition is met.

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in [list];
do

commands
done

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in 1 2 3 4 5 6 7 8 9 10;
do

echo "Value of x is : $x"
done

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in $(ls);
do

echo "Found file $x"
done

while loops

• while loop
repeats commands until exit condition is met

while condition
do

echo "Value of x is : $x"
done

while loops

• while loop
repeats commands until exit condition is met

x=10
while [$x –gt 0]
do

echo "Value of x is : $x"
let x=x-1

done

Initiate variable
Check value of variable

Change value of variable

Condition blocks
• Condition blocks test for a condition and if TRUE

execute one block and if FALSE execute another.

if [condition]
then

Block 1
else

Block 2
fi

Condition blocks
• Condition blocks test for a condition and if TRUE

execute one block and if FALSE execute another.

if [$1 –gt 0]
then

echo "$1 is greater than 0"
else

echo "$1 is smaller than 1"
fi

breaking loops
• Break command asks the shell to exit the loop

x=10
while [1]
do

echo "Value of x is : $x"
x=x-1
if [$x == 0]
then

break
fi

done

Run external commands

• backticks are a way to send a command to the
shell and capture the result :

files=`ls *txt`
echo $files

• Another way is to use $() :
files=$(ls *txt)
echo $files

Functions in shell scripting

• Functions separate logical blocks of code.
• Typically a function contains a piece of code

that is used repeatedly in a script.
• Code in a function is only executed when a

function is ”called”.
• Functions can “receive” arguments and ”return”

values.
• Functions allow code portability.

Functions in shell scripting
#!/bin/bash

fileSize(){
wc -l $1 | awk '{print $1}'

}

for x in $(ls);
do

fileSize $x #Function output sent to STDOUT
size=$(fileSize $x) #Capture function output
echo -e "Found file $x\t with $size lines."

done

Summary

• Shell scripts allow easy automation and
reproducibility.

• Shell scripts support basic programming tenets
such as Variables, Conditions, Loops and
Functions.

• Shell scripting is a useful way to combine the
various simple but powerful command-line
tools.

• Functions can be copied from one script to
another to allow reuse of code.

