
Doing more in UNIX: 
Command-line tools

HORT 530
Lecture 3

Instructor: Kranthi Varala



UNIX features
• Command-line based.
• Supports thousands of small programs running 

simultaneously.
• Easy to create pipelines from individual programs.
• Each command has 3 Input/Output streams: STDIN, 

STDOUT, STDERR.
• Be aware of your location in the file system and 

permissions.



Control over process
• Foreground: Default mode for running commands. The 

shell waits on the process to finish.
• Process retains control of the command line.
• Key input is directed to the active process.

• Background: Process is initiated and pushed to the 
background.

• Control of command-line is returned to the user.
• Key input and other interactions are no longer passed to the 

process.
• Processes can be pushed to background at initiation using &
• cat North_of_Boston.txt &



Stopping a process
• Active processes can be stopped or terminated (killed) 

using the SIGSTOP and SIGKILL signals.
• SIGSTOP in UNIX shell is issued by ctrl+z
• Once a process receives SIGSTOP it is suspended 

and the job number [j] is shown.
• Suspended processes can pushed to background 

using the command bg %j .



Killing a process
• Active processes can be stopped or terminated (killed) 

using the SIGSTOP and SIGKILL signals.
• SIGKILL in UNIX shell is given by ctrl+c
• SIGKILL kills the process immediately and returns 

control to the user.
• Stopped processes can be killed using kill

command.



Monitoring processes
• Processes in the current shell can be listed using the 
jobs command.

• SIGKILL can then be issued for any job using the kill 
%j command where j is the job number.

• To list all processes on the current machine use the ps
command.

• E.g., ps –ae gives a snapshot of all processes on the 
current machine.

• A more dynamic view is given by the command top.





Running long processes
• On a cluster we use the job/queue management systems to 

run long jobs. Eg., PBS system on Scholar.

• On a remote non-cluster server, you can initiate a process 
using the nohup command.

• nohup stands for no hangup, which means keep the 
process running even after the current shell closes.

• Remember to start nohup commands in background by 
using & at the end of the command.

• nohup cat SRR6473489.fastq &

No hangup Actual command Background



Command line tools
• Common tasks users perform are greatly helped by 

standard command-line tools in UNIX.
• Two most common user tasks are:

• File manipulation
• Text manipulation

• We learnt some file commands already:
• ls, cd, chmod, mkdir, cp, mv etc.

• Other common tasks with files and folders are 
compression, archiving and linking.



Compression
• Files are compressed to reduce their size on the disk.
• Typically most efficient with compressing text files.
• gzip command is most commonly used to compress 

and expand files. 
• Replaces original file with compressed file.

• bzip2 is an alternative compression algorithm that may 
provide more compression but takes more time to 
compress and expand.



Archiving
• Creates a single archive that contains multiple files 

and/or directories.
• tar is the most common archiving tool used in UNIX
• Supports compression via compression programs such 

as gzip and bzip2.
• $ tar -cvzf TextFiles.tar.gz *txt
• Creates an archive called TextFiles.tar.gz from all txt 

files in the current folder. Does NOT replace.
• $ tar -xvzf TextFiles.tar.gz
• Extract the files from TextFiles.tar.gz to current folder.
• Preserves the original directory structure



Links 
• A link points to a file/directory on the file system.
• $ ln -s SRR6473489.fastq Example.fastq

• Creates a link called Example.fastq

• Similar to the concept of shortcuts on Windows/OS 
X.

• Removing a link does not remove the original file.
• Removing the original file does not remove the 

link, only makes it non-functional.



Common text formats
• Simple text files contain blocks of text with no 

imposed structure beyond the line breaks. 
• Eg., North_of_Boston.txt

• Text files can also store tables with data 
arranged in rows and columns.

• Defined column separators eg., <TAB>, Comma 
etc.

• Each row is one data collection.
• Data may be arranged in blocks that span 

multiple lines.
• Eg., FASTA and FASTQ formats in Biology.



Example tabular data
• Each row represents one gene. 
• Each column represents expression of gene in that 

sample. Column separator <TAB>
• First row and First column contain respective labels.



Example tabular data
• Each row represents one gene. 
• Each column represents expression of gene in that 

sample. Column separator ,
• First row and First column contain respective labels.



Example block data

1

2

3

4

FASTQ file contains 4 lines per block:
1. Sequence Header
2. Sequence
3. Quality Header
4. Quality



Word count

• wc command returns the word count in file.
• Default is to return counts of words, lines and 

characters.



Sort file contents

• sort command sorts the file by the line 
content.

• Can be applied to tabular data to sort by 
specific columns.

• Default sort is by ASCII code (as modified by 
locale).



ASCII code

Image Credit:By Yuriy Arabskyy (Own work) via Wikimedia Commons



Extract specific columns

• cut allows extraction of ‘fields’ (columns) from 
the file.

• Default delimiter is <TAB> but can be 
substituted using the -d argument.



Extract specific columns

• Multiple columns can be specified by giving 
their column index in –f argument.

• E.g., -f1,5,7 would extract columns 1,5 and 7
• Range of columns may also be specified.

• E.g., -f1-4 would extract columns 1,2,3,4



Merge column data

• paste command allows combining files at a 
column level.



Matching text via patterns

• Pattern matching via regular expressions is a 
powerful tool to match text within files.

• It forms the basis for text searches and 
manipulation in multiple UNIX tools such as: 
grep, sed, awk etc.

• We will cover regular expressions and these 
commands in the next lecture.


