
The UNIX Operating 
System

HORT 530
Lecture 2

Instructor: Kranthi Varala



Operating Systems

Image By Golftheman - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4558519

• Operating systems allow the separation of hardware management from 
applications/programs.

• This allows the applications to work across different hardware platforms, 
although the applications are still specific to the OS.



Operating Systems

Image By Golftheman -
https://commons.wikimedia.
org/w/index.php?curid=455
8519

• The Kernel is the core function of the OS and handles basic-level 
communication between the various processes and the hardware.

• Libraries provide applications with standardized access to kernel 
functions.

Kernel

Virtual
Memory

Device 
Drivers

File 
Server

Library Library



Client/Server architecture

User1

User2

User3

User4

Server
(UNIX/
Web/

Database etc..)



Terminology

• Terminal: Device or Program used to establish 
a connection to the UNIX server

• Shell: Program that runs on the server and 
interprets the commands from the terminal.

• Command line: The text-interface you use to 
interact with the shell.



UNIX operating system
• First developed in 1970s, it is a multitasking OS that 

supports simultaneous use by multiple users.
• Strengths

• Command-line based.
• Supports thousands of small programs running simultaneously.
• Easy to create pipelines from individual programs.
• Multi-user support and partitioning is baked in.

• Challenges
• Command-line based.
• Finding help and documentation can be onerous.
• Many different variants.



Application Programming Interface (API)

• Biggest strength is the ability to connect different 
programs together.

• Programs/Applications need to be able to 
communicate.

• A pre-defined set of methods to communicate with an 
application is called it’s API.

• Each program comes with its own API.



Programs vs. libraries
• Programs/Applications: Perform a defined task that accepts 

one or more inputs and produces an output. 
• Example: ls – lists contents of current location.

• Libraries: Collection of related functions that may be used 
by different programs. 

• Example: GNU Scientific library – provides a set of 
complex math functions

• Users typically interact with programs, while programmers 
use libraries within their code.

• Both Programs and Libraries have APIs.



POSIX standards
• Standards defined by IEEE computer society to 

maintain portability between different UNIX OS’s.
• Originally defined standard API for core processes eg., 

kernel level access.
• Later expanded to include programs and utilities used 

directly by the user.
• Net result: Common UNIX commands you learn will be 

usable across UNIX/ Linux/MacOS etc.
• UNIX and MacOS (version 10.5 and above) are 

POSIX-certified



GNU’s not Unix
• GNU started as a movement to create an open-source 

AND free OS and set of utilities.
• Open-source: The source code of the software is 

visible to everyone.
• Free: No limitation on how to use/distribute the 

software.
• By default, all software is copy-righted with the rights 

belonging to the programmer/organization.
• Software can be open-source and/or free. 
• When you write your own pipelines, be aware of the 

difference in these two concepts.



GNU/Linux OS
• Most Unix-like operating systems are a variant of this 

scheme.
• Linux is typically the kernel of this OS.
• The rest of the utilities/applications were derived from 

the GNU project.
• Vast majority of commands you will type fall into the 

GNU portion of the OS.
• This user-interfacing part of the OS is often called User 

space.
• GNU/Linux is POSIX-compliant i.e., it mostly follows 

POSIX with a few exceptions. 



User vs. Kernel space
• User space: Set of applications/utilities that interact 

with the user. Also includes, the portions of the file 
system where these files reside AND the portion of 
memory (RAM) where the programs are loaded and 
run.

• Kernel space: Set of applications that form middle layer 
between hardware and user applications. These 
program operate in a separate, protected portion of the 
RAM. 



UNIX file system
• All UNIX files, including system and user files reside in 

a hierarchical directory structure.

• The file system maintains the record of where each file 
resides on the hardware.

• The lowest level or base of this structure is called the 
‘root’ directory represented as /

• Every user has a defined home directory
• My home is: /home/kvarala



Files and Directories
• Files are the basic unit of storage. Eg., This 

presentation file.
• Directories are containers that hold sets of related files. 

Eg., Set of presentations for this course.
• Each file name within a directory has to be unique.
• UNIX is case-sensitive i.e., the file example.txt is 

different from the file Example.txt
• Directory names are also case-sensitive.



Files contd..
• File extensions eg., .txt or .jpg or .doc etc. have no 

relevance in UNIX. 
• It is good practice for users to use a file extension that 

describes the file type.
• Use long descriptive names for your files. File name 

length is allowed up to 255 characters.
• File size limits are defined by the file system used by 

the OS. 
• Current file systems support file sizes larger than the 

capacity of current hardware (2^63 bytes).



Typical structure of UNIX
/bin ==> Programs/Utilities. Typically OS files.
/etc ==> Administrative files. Usually, OS related.
/home ==> Home directories of users.
/lib ==> Libraries. OS or installed software.
/mnt ==> Mounted devices. Eg., CD/DVD, USB drive.
/root ==> Home for root/administrative user.
/tmp ==> Temporary files. OS, software and user.
/usr ==> User-space programs/Utilities
/var ==> System generated temporary files.



File paths
• In a shell you are always in a particular location. Default location 

after login is your home
• Eg: /home/kvarala

• Path defines the location of the file/directory. 
• Path can be defined two ways:

• Absolute: Path starts from Root. Eg., 
/scratch/scholar/k/kvarala/IDAB/Week1/Lecture_1.pdf

• Relative: Path starts from current location. Eg., 
../Week2/Lecture_2.pdf

• Special characters:
• . Means current directory
• .. Means parent directory
• ~ Means home directory



Commands

• Every command is a program.
• UNIX philosophy is write simple programs that 

do one job very well.
• Complex functionality can be built by 

combining simple programs.
• User can add commands by writing their own 

program
• Commands are of course Case-sensitive and 

the OS needs to know the path to the program.



Command line

• Every word you type in the command line is 
interpreted by the shell as a command.

• If the shell cannot interpret the command it 
returns the error: “command not found”.

• The shell looks for the program matching the 
typed command in the locations defined by 
PATH.

• User can add commands by adding programs 
to their PATH.



I/O streams

• Each command has 3 Input/Output streams:
• STDIN : Standard Input is the default stream that 

inputs data into a command. Example: keyboard, 
file etc.

• STDOUT : Standard Output is the default output 
stream of the command. Example: Terminal

• STDERR: Standard Error is where the errors from 
the program are displayed: Example: Terminal



Note on Fonts
• Fonts are an important comfort factor for coding for 

two reasons:
• Equal spacing: You want X letters to take Y space
• Unambiguous: i and 1 and l and I should look different
• Unambiguous: i and 1 and l and I should 
look different

• For this course I will use a font called “Source 
code pro” for all UNIX commands and in my 
terminal app.

• https://github.com/adobe-fonts/source-code-pro



Anatomy of a command
• Let’s explore commands with an easy command called 
cal

• This command by default displays the calendar for this 
month with today highlighted.



Anatomy of a command
• Commands can often take arguments, which change 

the default settings.
• The argument -3 changes display to 3 months with 

current month in the center.



Anatomy of a command
• The argument -y displays the whole year.



Anatomy of a command
• Commands may take multiple arguments that change 

multiple defaults.
• First argument changes the month and second 

argument changes the year.



• Arguments that start with - are typically called switches. 
• Arguments that do not have a preceding - are 

sometimes called parameters.

• NOTE: This naming convention is not always followed.

Anatomy of a command



Example UNIX commands

• ls stands for list. This command lists the 
contents of the current location.

• pwd stands for print working directory. This 
command tells you your current location in the 
shell.

• hostname gives you the name of the host that 
the shell you are in resides on. 

• who lists all the users currently logged into the 
server.



Let’s explore ls

• ls is a basic but powerful command.
• It has over 50 arguments to alter its behavior.
• The most commonly used one is the ‘long list 

format’ specified by the switch -l .
• Try typing in ls in your scratch folder:
• Now, try typing in ls -l



ls on my scratch

Contents of my scratch folder

Contents of my scratch folderMetadata about the contents



Metadata on files and directories

• Metadata is information about the file that are 
not part of the contents of the file. 

• Three main parts to it:
• Ownership and access permissions
• Size
• Timestamp



Ownership and Access
• Every file/directory has a defined owner, which is one 

user.

• Owner controls who can access the file/directory by 
setting the permissions.

• Each user is a part of one or more groups. Each file 
belongs to one of the groups that the user belongs to. 

Permissions Owner Group



UNIX permissions

• Execute == 1
• Write == 2
• Read == 4

Common Permission
settings

Indicator Numeric code

Read-only r-- 4
Read & execute r-x 5
Read & write rw- 6
Read, write, execute rwx 7



UNIX permissions

• First character is - for a file and d for a directory.
• Characters 2-4 refer to permissions the owner sets for himself.
• Characters 5-7 are permissions for the group listed.
• Characters 8-10 are permissions for the world (i.e., every other user)

Common Permission settings Indicator Numeric code

Read-only r-- 4

Read & execute r-x 5

Read & write rw- 6

Read, write, execute rwx 7

Permissions



Working with directories

• pwd -> list the present working directory
• mkdir -> make a new directory
• cd -> change directory
• rmdir -> remove directory
• Try using cd with path:

• cd /scratch/scholar/k/kvarala/IDAB
• cd ./Week1
• cd ../Week2



File commands

• mv is the move command that moves a file. 
This command is also used for renaming files.

• rm is the remove command and will remove 
the file or empty directory listed as argument.

• cat is the concatenate command that joins the 
contents of all files given as arguments. 



Creating pipelines from commands

• The STDIN and STDOUT of each command 
can be redirected to combine programs 
together.

• For example, the STDOUT of one program can 
be sent to the STDIN of another program.

• We will go over examples in tomorrow’s lab 
section.



Summary
• UNIX is a text-based, multiuser OS, that supports 

simultaneous execution of thousands of 
commands.

• UNIX is case-sensitive for file names and 
command names.

• Each command is a program stored as a file in 
specified location.

• Commands can be combined by redirecting I/O 
streams.

• Each file has a path that uniquely identifies its 
location.

• Access to files and directories is controlled via 
permissions set by the owner of the file.


