
Shell scripting and
system variables

HORT 59000
Lecture 5

Instructor: Kranthi Varala

Text editors
• Programs built to assist creation and manipulation of

text files, typically scripts.
• nano : easy-to-learn, supports syntax highlighting,

lacks GUI.
• Emacs : provides basic editing functions but also

extendible to add functionality. Supports GUI,
extensions provide a wide range of functions.

• vi/vim : extensive editing functions and relatively limited
extensibility, command and insert modes distinct, steep
learning curve, but very rewarding experience.

Text manipulations
• Tabular data files can be manipulated at a column-

level. 1. Cut: Divide file & extract columns. 2. Paste:
Combine multiple columns into a single table/file.

• Sort: Sort lines in a file based on contents of one or
more columns.

• Regular expressions : defining patterns in text. Special
characters and quantifiers allow search and
replacement of simple-to-complex matches.

• grep and awk use the power of regular expressions to
make text processing very easy.

Command-line operations
• All commands so far are run one at a time.
• Redirection and pipes allow combining a few

commands together into a single pipeline.
• Lacks logical complexity, such as ability to make

decisions based on input / values in file.
• Certain repetitive tasks are tedious to user.
• All commands are being sent to and interpreted by the

‘shell’

Client/Server architecture

User1

User2

User3

User4

Server
(UNIX/
Web/

Database etc..)

Terminology

• Terminal: Device or Program used to establish
a connection to the UNIX server

• Shell: Program that runs on the server and
interprets the commands from the terminal.

• Command line: The text-interface you use to
interact with the shell.

Shells

• Shell itself is a program on the server and can
be one of many varieties

1. bash : Most popular shell, default on most Linux
systems. Installed on all Linux systems

2. zsh : A bash-like shell with some extra features.
E.g., support for decimals, spelling correction etc.

3. tcsh : A C-like syntax for scripting, supports
arguments for aliases etc.

• We will work with bash shell scripting since it is
the most common and supported shell.

Environment variables
• A variable is a container that has a defined

value.
• It’s called a variable because the value

contained inside it can change.
• Variables allow changing a part of the

command that is to be executed.
• Every shell has a set of attached variables.

See them by using the command env
• E.g., the variable SHELL contains the path to the

current shell.

Working with environment variables

• Set the value of a variable as follows:
FOO=BAR

• Retrieve the value of a variable as follows:
echo $FOO

Example Environment variables

• On scholar: using the command env shows 99
environment variables:

• Examples:
HOME=/home/kvarala

SHELL=/bin/bash

HOSTNAME=scholar-fe01.rcac.purdue.edu

HISTSIZE=1000

RCAC_SCRATCH=/scratch/scholar/k/kvarala

Environment vs. Shell variables

• Environment variables are ‘global’ i.e., shared
by all shells started AFTER variable is defined.

• Shell variables are only present in the shell in
which they were defined.

• Environment variables are inherited by child
shells but shell variables are not.

• Shell variable can be made an environment
variable by using export command.

FOO=BAR
export FOO

Environment vs. Shell variables

$ export FOO=BAR (FOO defined in the environment)
$ FOO2=BAR2 (FOO2 defined in shell)
$ bash (Start new shell)
$ echo $FOO

BAR (echoes value of FOO)
$ echo $FOO2

(empty)

Shell Scripting

• A script is simply a collection of commands that
are intended to run as a group.

• Commands may or may not be dependent on
each other.

• Variables, hence their values, can be
transferred from one command to another.

• Supports complex choices and logic.
• A script is always executed in its own shell.

Example Shell Script

• First example script: Hello world!

#!/bin/bash

This is our first shell script!!

echo “Hello World!”

Variables in Shell Scripting

• Variables are containers that store a value.
• All variables created in a script are shell

variables.
• A script can access the environment variables

in addition to its own shell variables.
• Variable can store any kind of value ie., string

or integer or floating point number etc.

Variables in Shell Scripting
INT=1

FLOAT=1.5

STR=hello

STR2=“hello world”

RND=asdf2341.sfe

echo $INT

echo “Value of FLOAT is $FLOAT”

echo “$STR is a string”

echo “$RND is non-sensical”

Example Shell Script

• Second example script: lsScr.sh

#!/bin/bash

List contents of scratch

cd $RCAC_SCRATCH

ls –l
• Make script executable, place it in PATH.

Special shell variables

• Special Variables
• $# = No. of parameters given to script
• $@ = List of parameters given to script
• $0 = Name of current program (script)
• $1, $2.. = Parameter 1, 2 and so on..
• $? = Exit value of last command run

• These variables are shell variables and only
valid to the current shell.

Even more special characters

• * matches every character, just as in regular
expressions.

• So, ls *txt in a script will list all files whose
name ends in txt.

• \ is an escape character which tells the shell to
not interpret the character after it.

• \ is commonly used to escape the special
characters such as *, $ etc.

Example Shell Script
• Third example script: lsScr.2.sh

#!/bin/bash
List contents of scratch
echo “Executing script : \”$0\” with $#
parameters”
cd $RCAC_SCRATCH
ls –l
• Make script executable, place it in PATH.

Command Blocks

• Two fundamental blocks in scripting:
• Loops

Repeat the commands in the block until the exit
condition is met.

• Conditions
Evaluate condition and if true execute commands in
the block.

Loops

• Two kinds of loops supported in bash:
• for loop

operates on a list and repeats commands in the
block for each element on the list

• while loop
repeats commands in the block until an exit
condition is met.

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in [list];

do

commands

done

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in $(ls);

do

echo “Found file $x”

done

for loops

• for loop
operates on a list and repeats commands in
the block for each element on the list

for x in 1 2 3 4 5 6 7 8 9 10;

do

echo “Value of x is : $x”

done

while loops

• while loop
repeats commands until exit condition is met

while condition;

do

echo “Value of x is : $x”

done

while loops

• while loop
repeats commands until exit condition is met

x=10

while [$x –gt 0];

do

echo “Value of x is : $x”

x=x-1

done

Shell Scripting
• Condition blocks test for a condition and if TRUE

execute one block and if FALSE execute another.
if [condition]

then

Block 1

else

Block 2

fi

Shell Scripting
• Condition blocks test for a condition and if TRUE

execute one block and if FALSE execute another.
x = 5

if [$x –gt 0]

then

echo “$x is divisible”

else

echo “0 is not divisible”

fi

breaking loops

• Break command asks the shell to exit the loop

x=10

while [1];

do

echo “Value of x is : $x”

x=x-1

if [$x == 0]

break

done

Run external commands

• backticks are a way to send a command to the
shell and capture the result.

• It’s a special character : `

• Eg.,
files = `ls *txt`

echo $files

Functions in shell Scripting

• Functions separate logical blocks of code.
• Typically a function contains a piece of code

that is used repeatedly in a script.
• Code in a function is only executed when a

function is ”called”.
• We will cover functions in tomorrows lab

section.

