Shell scripting and
system variables

HORT 59000
Lecture 5
Instructor: Kranthi Varala

Text editors

* Programs built to assist creation and manipulation of
text files, typically scripts.

* nano : easy-to-learn, supports syntax highlighting,
lacks GUI.

 Emacs : provides basic editing functions but also
extendible to add functionality. Supports GUI,
extensions provide a wide range of functions.

* vi/vim : extensive editing functions and relatively limited
extensibility, command and insert modes distinct, steep
learning curve, but very rewarding experience.

Text manipulations

» Tabular data files can be manipulated at a column-
level. 1. Cut: Divide file & extract columns. 2. Paste:
Combine multiple columns into a single tablef/file.

e Sort: Sort lines in a file based on contents of one or
more columns.

* Regular expressions : defining patterns in text. Special
characters and quantifiers allow search and
replacement of simple-to-complex matches.

« grep and awk use the power of regular expressions to
make text processing very easy.

Command-line operations

 All commands so far are run one at a time.

» Redirection and pipes allow combining a few
commands together into a single pipeline.

» Lacks logical complexity, such as ability to make
decisions based on input / values in file.

 Certain repetitive tasks are tedious to user.

« All commands are being sent to and interpreted by the
‘shell’

Client/Server architecture

User1

User2

User3

User4

Server

(UNIX/
Web/
Database etc..)

Terminology

« Terminal: Device or Program used to establish
a connection to the UNIX server

» Shell: Program that runs on the server and
interprets the commands from the terminal.

« Command line: The text-interface you use to
Interact with the shell.

Shells

« Shell itself is a program on the server and can
be one of many varieties

1. bash : Most popular shell, default on most Linux
systems. Installed on all Linux systems

2. zsh : A bash-like shell with some extra features.
E.g., support for decimals, spelling correction etc.

3. tcsh : A C-like syntax for scripting, supports
arguments for aliases etc.

* We will work with bash shell scripting since it is
the most common and supported shell.

Environment variables

* A variable is a container that has a defined
value.

e |[t's called a variable because the value
contained inside it can change.

 Variables allow changing a part of the
command that is to be executed.

* Every shell has a set of attached variables.
See them by using the command env

* E.g., the variable SHELL contains the path to the
current shell.

Working with environment variables

 Set the value of a variable as follows:
FOO=BAR

* Retrieve the value of a variable as follows:
echo $FO0O

Example Environment variables

* On scholar: using the command env shows 99
environment variables:

« Examples:

HOME=/home/kvarala

SHELL=/bin/bash
HOSTNAME=scholar-fe@1.rcac.purdue. edu
HISTSIZE=1000
RCAC_SCRATCH=/scratch/scholar/k/kvarala

Environment vs. Shell variables

« Environment variables are ‘global’ i.e., shared
by all shells started AFTER variable is defined.

« Shell variables are only present in the shell in
which they were defined.

* Environment variables are inherited by child
shells but shell variables are not.

. Shell variable can be made an environment
variable by using export command.

FOO=BAR
export FOO

Environment vs. Shell variables

$ export FOO=BAR (FOO defined in the environment)

$ FOO2=BAR2 (FOOZ2 defined in shell)
$ bash (Start new shell)

$ echo $FOO

BAR (echoes value of FOO)

$ echo $F002
(empty)

Shell Scripting

A script is simply a collection of commands that
are intended to run as a group.

« Commands may or may not be dependent on
each other.

« Variables, hence their values, can be
transferred from one command to another.

» Supports complex choices and logic.
» A script is always executed in its own shell.

Example Shell Script

* First example script: Hello world!

#!/bin/bash
This 1is our first shell script!!
echo “Hello World!”

Variables in Shell Scripting

* Variables are containers that store a value.

 All variables created in a script are shell
variables.

A script can access the environment variables
In addition to its own shell variables.

 Variable can store any kind of value ie., string
or integer or floating point number etc.

Variables in Shell Scripting

INT=1

FLOAT=1.5
STR=hello
STR2=“hello world”
RND=asdf2341.sfe

echo $INT
echo “Value of FLOAT is $FLOAT”
echo “$STR is a string”

echo “$RND is non-sensical”

Example Shell Script

« Second example script: 1sScr. sh

#!/bin/bash

List contents of scratch

cd $RCAC_SCRATCH

ls -1

* Make script executable, place it in PATH.

Special shell variables

» Special Variables

. $# =
. $@ =
. $0 =
- $1,%2.. =
. $7 =

No. of parameters given to script
List of parameters given to script
Name of current program (script)
Parameter 1, 2 and so on..

Exit value of last command run

* These variables are shell variables and only
valid to the current shell.

Even more special characters

* * matches every character, just as in regular
expressions.

* S0, Is *txt in a script will list all files whose
name ends in txt.

* \is an escape character which tells the shell to
not interpret the character after it.

* \ is commonly used to escape the special
characters such as *, $ etc.

Example Shell Script

* Third example script: 1sScr.2.sh

#!/bin/bash
List contents of scratch

echo “Executing script : \”$0\” with $#
parameters”

cd $RCAC_SCRATCH
1s -1
» Make script executable, place it in PATH.

Command Blocks

« Two fundamental blocks in scripting:
* Loops
Repeat the commands in the block until the exit
condition is met.

 Conditions
Evaluate condition and if true execute commands in
the block.

Loops

* Two kinds of loops supported in bash:

* for loop
operates on a list and repeats commands in the
block for each element on the list

* while loop
repeats commands in the block until an exit
condition is met.

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in [list J;
do
commands

done

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in $(1s);
do
echo “Found file $x”

done

for loops

* for loop
operates on a list and repeats commands in
the block for each element on the list

for x in 1234567 89 10;
do
echo “Value of x is : $x”

done

while loops

* while loop
repeats commands until exit condition is met

while condition;
do
echo “Value of x is : $x”

done

while loops

* while loop
repeats commands until exit condition is met

X=10

while [$x —-gt @ 1;

do
echo “Value of x is : $x”
X=x-1

done

Shell Scripting

e Condition blocks test for a condition and if TRUE
execute one block and if FALSE execute another.

if [condition]
then

Block 1
else

Block 2
fi

Shell Scripting

e Condition blocks test for a condition and if TRUE
execute one block and if FALSE execute another.

X =5
if [$x —gt 0]
then
echo “$x is divisible”
else

echo “0 is not divisible”
fi

breaking loops

* Break command asks the shell to exit the loop

X=10
while [1 1;
do
echo “Value of x is : $x”
X=x-1
if [$x == 0]
break

done

Run external commands

* backticks are a way to send a command to the
shell and capture the result.

\

* [t's a special character :

* Eq.,
files = ‘'1s *txt®

echo $files

Functions in shell Scripting

* Functions separate logical blocks of code.

* Typically a function contains a piece of code
that is used repeatedly in a script.

» Code in a function is only executed when a
function is "called”.

 We will cover functions in tomorrows lab
section.

