
Regular expressions:
Text editing and

Advanced manipulation
HORT 59000

Lecture 4
Instructor: Kranthi Varala

Simple manipulations
• Tabular data files can be manipulated at a column-

level.
• Cut: Divide file into columns using delimiter and extract

one or more columns.
• Paste: Combine multiple columns into a single

table/file.
• Sort: Sort lines in a file based on contents of one or

more columns.

Text editors
• Programs built to assist creation and manipulation of

text files, typically scripts.
• Often support the syntax of one or more programming

languages.
• Provide a set of functions and options that makes it

easier to find and manipulate text.
• Certain editors can incorporate additional functions

such as syntax checking, compilation etc.

nano/pico editors
• nano is a pure text editor in GNU, that was build to

emulate the original pico editor in UNIX.
• Easy-to-learn, supports syntax highlighting, regular

expressions, scrolling etc.
• Lacks GUI, navigate within editor using keyboard.
• Special functions, such as toggling options/features,

use the Ctrl or Meta (Alt) key.
• Check /usr/share/nano to see the list of supported

syntax formats.
• For example: /usr/share/nano/python.nanorc provides

syntax rules for Python.

emacs editor
• Powerful program that provides basic editing functions

but also extendible to add functionality.
• Supports syntax highlighting, regular expressions,

Unicode (other languages)
• Supports GUI, when connection invoked with X support

(ssh -X <user>@server)
• Can install extensions that provide a wide range of

functions. E.g. Calendar, debugging interface,
calculator, version control etc.

• Learn more:
https://www.gnu.org/software/emacs/tour/index.html

vi editor
• Powerful editor that provides extensive editing

functions and relatively limited extensibility. My favorite
text editor!!

• Normal or Command mode is default and captures
keyboard input as commands or instructions to the
editor.

• Insert mode is entered by pressing ‘i’ which then allows
changes in text. Return to command mode by pressing
’Esc’.

• Steep learning curve… but very rewarding experience.
• ALL Unix systems include vi

Regular expressions

• Regular expressions (regex) are a specific way of
defining patterns in text.

• Patterns allow us to look for exact and inexact
matches.

• For example, British vs. US English
• Centre vs. Center
• Theatre vs. Theater
• -ize vs –ise

• Regex allows us to mix fixed and variable
characters.

• Typically written as follows: /<regex>/

• Regex is CaSe-SeNsiTive

Special characters
• . Matches any character except new line
• \ Escape character that changes the

meaning of the character following it
• \s space
• \S not a space
• \t tab
• \n new line character (Unix)
• \r new line character (Older Mac OS)
• \r\n new line character(DOS/Windows)

Special characters

• \d digit, i.e., 0-9
• \D anything except a digit
• \w word (includes letter, digit, underscore)
• \W any character that is not included in word
• ^ Start of line
• $ End of line
• Examples: /\d\d$/

Special character examples

1. /^\d\dth\s/ matches number written as
10th – 99th except numbers such as 21st or
42nd or 53rd

2. /\w\sdogs\s/ matches all lines that have
some word followed by the word dogs

Character classes

• A class/set is used to define a group of
characters that are allowed in the pattern.

• Class is defined using the [] construct.
• Each character within the [] is treated as a

possible option for the character.
• Each class refers to one character in the

pattern.
• Character ranges, such as all numbers or all

letters supported.

Character classes

• [A-Z] matches all upper-case letters
• [a-z] matches all lower-case letters
• [0-9] matches all digits
• [tnr][hd] matches th or nd or rd
• Character class can be negated by using ^ as

the first character in the class.
• [^0-9] matches all characters that are not a

number

Quantifiers

• Patterns can be modified or extended by using
quantifiers.

• A quantifier defines the number of times the
character preceding it is matched.

• Can specify exact or minimum or maximum
number of matches.

• Can also set a range of minimum and
maximum matches

Quantifiers

• * zero or more matches
• + one or more matches
• ? zero or one matches
• {2} exactly 2 matches
• {2,10} at least 2, maximum of 10 matches
• {,10} 0-10 matches

Quantifiers examples

• /G+/ at least one G

• /G*/ zero or more Gs (will match every
line)

• /G{5}/ Exactly 5 Gs (continuous)

• /AG{5,10}/ A followed by 5-10 Gs

• /CG{5,}/ C followed by >= 5 Gs

• /ATCG*/ ??

• /[0-9]{2,4}/ ??

Character groups

• Can group two or more patterns using the (a|b)
construct.

• For example, the British vs. US spelling can be
captured as

• cent(er|re) Matches center and centre
• analy(s|z)e Matches analyse and analyze

• Character groups can be used in combination
with quantifiers and special characters.

grep
• grep command searches for the specified pattern in

every line of the file.

• By default returns (prints) every line in file that matches
the pattern.

• Supports many options/arguments that alter the
behavior of grep.

• Very useful to select rows of data that match a pattern
the user is interested in.

grep
• -c returns the number of matching lines
• -n show line number along with matching line
• -m limits the number of matches grep looks for
• -v inverts match, i.e., return non-matching lines
• -i case-insensitive match
• -f <file> read patterns from file
• -B <N> return N lines before the matching line
• -A <N> return N lines after the matching line

sed

• grep is useful for finding matches but not
editing.

• sed is a stream editor, i.e., it is used to edit the
stream (STDIN or file) that is passing through
it.

• sed s/<pattern>/<replacement>/ <file>
• Replace every match of <pattern> in the file with

<replacement>
• Useful for repetitive editing of one or multiple

files.

awk

• awk is a programming language that allows
one line programs, therefore can be used as a
command.

• Each line in a file is a ‘record’ and each word in
the line is a ‘field’. Default separator is space.

• Works best with tabular data files since the
‘fields’ are consistent across the ‘records’.

awk (condition/pattern){action/script} filename

awk variables

• Special variables in awk have predefined meaning.
• FS = Field separator
• RS = Record separator
• OFS= Output Field separator
• ORS = Output Record separator
• $0 = Current record/line
• $N = Nth field in current record
• BEGIN = execute at start of command
• END = execute at end of command

awk -F "," 'BEGIN{EL=0}(NF==0){EL++} END{print EL}' ProteinFamily.txt

awk example

Use this Field
Separator

Perform this action On this file

Execute at
start Match

Execute
Per
line

Execute at
end

