

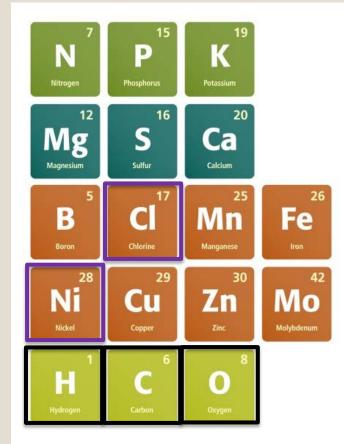
How to Select the Right Fertilizer for Hydroponics

Petrus Langenhoven, Ph.D. Horticulture and Hydroponics Crops Specialist

Greenhouse and Indoor Hydroponics Workshop, West Lafayette IN, September 5, 2018

PURDUE HORTICULTURE & LANDSCAPE ARCHITECTURE

Developing a Nutrient Program


- Laboratory analysis of your water
- Take different nutrient sources into account (substrate, water, fertilizer)
- Different crops may have different needs
- Numerous published nutrient solution formulations exist
- For vegetative crops, most nutrient-solution recipes don't adjust the ratio of nutrients while they grow
- In fruiting crops, the ratio may be adjusted to alter the shift between vegetative and reproductive growth
- Most new growers use one recipe that works well for a range of crop growth stages and conditions

Optimize Nutrient Solution Formulation Based on:

- Crop grown
- Plant growth stage (vegetative, reproductive, etc.)
- Changing environmental conditions (light intensity and duration, temperature, etc.)
- Changing plant stress conditions (increase or decrease EC)
- Changing pH of the rooting medium
- Need to alter nutritional status of plant to counter an insufficiency

14 Essential Elements

Thus, 12 elements applied in a fertilization program

Macronutrients
Secondary Nutrients
Micronutrients
Non-Fertilizer Elements

www.mosaicco.com

		Concentration in Dry Tissue				
Element	ALL DRAWLOO	Symbol	ppm	%		
Major Elements						
Carbon		С	450,000	45		
Oxygen		Ο	450,000	45		
Hydrogen		Н	60,000	6		
Nitrogen		N	15,000	1.5		
Potassium		К	10,000	1.0		
Calcium		Ca	5,000	0.5		
Magnesium		Mg	2,000	0.2		
Phosphorus		Р	2,000	0.2		
Sulfur		S	1,000	0.1		
Micronutrients						
Chlorine		Cl	100	0.01		
Iron		Fe	100	0.01		
Manganese		Mn	50	0.005		
Boron		В	20	0.002		
Zinc		Zn	20	0.002		
Copper		Cu	6	0.0006		
Molybdenum		Mo	0.1	0.00001		

Source: Ames, M. and Johnson, W.S., 1986, in Proceedings of the 7th Annual Conference on Hydroponics: The Evolving Art, The Evolving Science, Hydroponic Society of America, Concord, CA.

PURDUE HORTICULTURE & LANDSCAPE ARCHITECTURE

Irrigation Water Quality Guidelines

	Upper Limit	Optimum Range	Comments
рН	7.0	5.5 - 6.5	
EC	1.25 mS·cm ⁻¹	<0.25 closed system <1.0 open system	0.75 mS·cm ⁻¹ for plugs and seedlings. High EC can be the result of accumulation of a specific salt which can reduce crop growth
Total Alkalinity (as CaCO ₃), acid-neutralizing or buffering capacity	150 mg∙L ⁻¹	0 – 100 mg·L ⁻¹	Measures the combined amount of carbonate, bicarbonate and hydroxide ions. $30 - 60 \text{ mg} \cdot \text{L}^{-1}$ are considered optimum for plants. <u>pH 5.2, 40 mg} \cdot \text{L}^{-1} alkalinity; <u>pH 5.8, 80 mg} \cdot \text{L}^{-1} alkalinity; <u>pH 6.2, 120 mg} \cdot \text{L}^{-1} alkalinity.</u> CaCO₃ at >150 mg·L⁻¹ may increase the incidence of dripper clogging</u></u>
Hardness (amount of dissolved Ca ²⁺ and Mg ²⁺)	150 mg·L ⁻¹ >60 mg·L ⁻¹ Ca >25 mg·L ⁻¹ Mg	50 – 100 mg·L ⁻¹	Indication of the amount of calcium and magnesium in the water. Calcium and magnesium ratio should be $3 - 5 \text{ mg} \cdot \text{L}^{-1}$ calcium to $1 \text{ mg} \cdot \text{L}^{-1}$ magnesium. If there is more calcium than this ratio, it can block the ability of the plant to take up magnesium, causing a magnesium deficiency. Conversely, if the ratio is less than 3-5 Ca:1 Mg, the high magnesium proportion can block the uptake of calcium, causing a calcium deficiency. Equipment clogging and foliar staining problems above 150 ppm
Bicarbonate Equivalent (HCO ₃ -)	122 mg·L ⁻¹	$30-50 \text{ mg}\cdot\text{L}^{-1}$	Help to stabilize pH. Increased pH and can lead to Ca and Mg carbonate precipitation

PURDUE HORTICULTURE & LANDSCAPE ARCHITECTURE

Alkalinity

- **Ability of water to neutralize acids**; it buffers water against changes in pH
- Reported in terms of parts per million (ppm) CaCO₃ or milli-equivalent (meq·L⁻¹)
- Water alkalinity can vary between 50-500 ppm (1-10 meq·L⁻¹)
- Alkalinity affects how much acid is required to change the pH

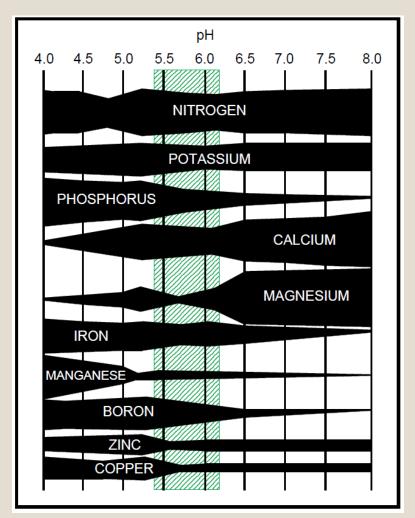
meq∙L ⁻¹	ppm CaCO ₃	ppm HCO ₃ -	ppm CO ₃ ²⁻	ppm Ca ²⁺	Element	Molecula Weight	Range meq·L ⁻¹	Classification
1	50	61	30	20	0			T
2	100	122	60	40	Ca	40	0 to 1.5	Low
3	150	183	90	60	C	12	1.5 to 4	Marginal
4	200	244	120	80	0	16		3
6	300	366	150	120	H	1	> 4	High
Source: Nelson, P.V. Greenhouse		No action requiredAcid, fertilizer and/or less limeAcid injection		Reverse Osmosis				
$ \begin{array}{c} \longrightarrow 1.5 \longrightarrow 3 \longrightarrow 8 \longrightarrow 10 \\ Alkalinity (meq \cdot L^{-1}) \end{array} $								

Correcting High Alkalinity

Acid	Amount of acid to add for each meq of alkalinity (fl oz/1,000 gals)*	Concentration of nutrient provided by one fl oz. of acid per 1,000 of water
Nitric (76%)	6.6	1.64 ppm
Phosphoric (75%)	8.1	2.88 ppm
Sulfuric (35%)	11.0	1.13 ppm

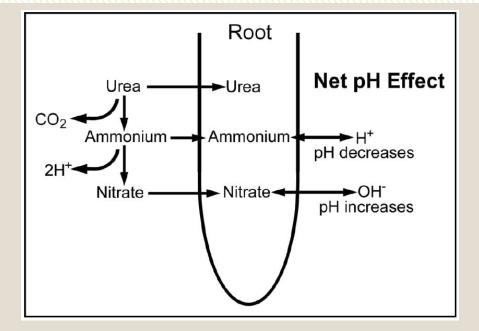
Greenhouse substrate and management, D.A. Bailey, W.C. Fonteno and P.V. Nelson, NCSU

Irrigation Water Quality Guidelines


	Upper Limit	Optimum Range	Comments
Calcium	120 mg·L ⁻¹	$40 - 120 \text{ mg} \cdot \text{L}^{-1}$	
Magnesium	$24 \text{ mg} \cdot \text{L}^{-1}$	$6 - 24 \text{ mg} \cdot \text{L}^{-1}$	
Iron	5 mg·L⁻¹	$1 - 2 \text{ mg} \cdot \text{L}^{-1}$	>0.3 mg·L ⁻¹ , clogging; 1.0 mg·L ⁻¹ , foliar spotting and clogging; above 5.0 mg·L ⁻¹ , toxic. Could lead to iron precipitates resulting in plugging of irrigation system emitters
Manganese	2 mg·L ⁻¹	$0.2 - 0.7 \text{ mg} \cdot \text{L}^{-1}$	>1.5 mg·L ⁻¹ emitter blockage can occur
Boron	0.8 mg·L ⁻¹	$0.2 - 0.5 \text{ mg} \cdot \text{L}^{-1}$	
Zink	2 mg·L ⁻¹	$0.1 - 0.2 \text{ mg} \cdot \text{L}^{-1}$	
Copper	0.2 mg·L ⁻¹	$0.08 - 0.15 \text{ mg} \cdot \text{L}^{-1}$	
Molybdenum	0.07 mg·L ⁻¹	$0.02 - 0.05 \text{ mg} \cdot \text{L}^{-1}$	
Sulfate	240 mg·L ⁻¹	24 – 240 mg·L ⁻¹ (60 to 90 mg·L ⁻¹)	If the concentration is less than about 50 ppm, supplemental sulfate may need to be applied for good plant growth. High concentrations of sulfides can lead to build-up of sulfur-bacteria in irrigation lines that could clog emitters.
Chloride	70 mg·L⁻¹	$0-50 \text{ mg}\cdot\text{L}^{-1}$	Concern, above 30 mg \cdot L ⁻¹ for sensitive plants
Sodium	50 mg·L⁻¹	0 – 30 mg·L ⁻¹	If the SAR is less than 2 mg·L ⁻¹ and sodium is less than 40 mg·L ⁻¹ , then sodium should not limit calcium and magnesium availability

PURDUE HORTICULTURE & AGRICULTURE LANDSCAPE ARCHITECTURE

Chemical Properties of Growing Media


Materials	Average	Range	
Wood fibre	4.8	3.8–5.4	
Expanded clay granules	8.1	7.7–8.6	
Coir chips	5.7	5.4–6.1	
Coir dust	6.2	6.0–6.7	
Perlite	6.3	5.2–7.7	
PU-foam	6.6	4.7–8.9	
Pumice	6.3	4.7–7.6	Table 11.9The pH ofdifferent substrates andsubstrate constituents as givenby Kipp et al. (2000)
Rock wool	6.2	5.2–7.8	
Peat	3.9	3.4–4.4	

- pH Controls the availability of all essential plant nutrients
- pH range 5.4 6.0 for solution culture and soilless media ٠
- pH range 6.2 6.0 for soil-based media
- <u>Too high pH</u>: caused by highly alkaline water, excess lime, calcium nitrate fertilizers
 - P, Fe, Mn, Zn, Cu and B tied up
- <u>Too low pH</u>: Caused by acid forming fertilizers NH₄⁺
 - Ca, Mg, S, Mo tied up. Excessively soluble Fe, Mn, and Al react with P to render it insoluble

Selection of Fertilizer

- Proportion of potassium (K₂O:N)
- Proportion of phosphate (N:P₂O)
- Form of Nitrogen
 - Ammonium (NH₄⁺), small amounts
 - Nitrate (NO₃⁻), majority
 - Urea, small amounts

- Nitrate nitrogen tend to have basic reaction, raising media pH
- Ammonium sources of nitrogen will have an acid reaction, lowering media pH
- In an acidic environment $\rm NO_3^-$ is more readily absorbed, while $\rm NH_4^+$ is better absorbed at a higher pH
- At pH 6.8, both ionic species are taken up equally

Ammonium and Nitrate Nitrogen Calculation

GUARANTEED ANALYSIS	21-5-20
Total nitrogen (N)	21%
7.3% ammoniacal nitrogen	
12.6% nitrate nitrogen 1.1% urea nitrogen	
Available phosphate (P205)	5%
Soluble potash (K ₂ 0).	
Boron (B)	
Copper (Cu)	0.0262%
0.0262% water soluble copper (Cu) Iron (Fe)	0 105%
0.105% chelated iron (Fe)	. 0.10370
Manganese (Mn).	0.0525%
0.0525% water soluble manganese (Mn)	
Molybdenum (Mo)	0.0105%
Zinc (Zn)	0.0525%
0.002070 Water Soluble 2010 (20)	

Derived from: Ammonium Nitrate, Ammonium Phosphate, Potassium Nitrate, Urea Phosphate, Boric Acid, Copper Sulfate, Iron EDTA, Manganese Sulfate, Ammonium Molybdate, Zinc Sulfate

Answer

 $((7.3+1.1)/21) \times 100 = 40\%$ ammonium

 $(12.6/21) \times 100 = 60\%$ nitrate

				NGENIN		
Target Fertilizer		Commo	EC (mmhos/cm)			
Concentration (N/ppm) After Dilution	1:15	1:100	1:128	1:200	1:300	of Target Feed Rate After Dilution
25	0.2	1.6	2.1	3.2	4.8	0.16
50	0.5	3.2	4.1	6.4	9.6	0.32
75	0.7	4.8	6.2	9.6	14.5	0.47
100	1.0	6.4	8.2	12.9	19.3	0.63

WEIGHT (IN OUNCES) OF PRODUCT NEEDED TO MIX

Nitrogen Fertilizer and pH Relationship

15-5-15

.15%

PRODUCT PROPERTIES

Potential Acidity 1518 lbs calcium carbonate
equivalent per ton
Conductivity of 100 ppm N 0.52 mmhos/cm
Maximum Solubility 4 lbs/gal

PRODUCT PROPERTIES

Potential Basicity	131 lbs calcium carbonate	
	equivalent per ton	
Conductivity of 100 ppm	N0.69 mmhos/cm	
Maximum Solubility	3 lbs/gal	

GUARANTEED ANALYSIS

Total nitrogen (N)

1.1% ammoniacal nitrogen

- 11.8% nitrate nitrogen
- 2.1% urea nitrogen

GUARANTEED ANALYSIS	21-7-7
Total nitrogen (N)	
10.6% urea nitrogen	

- <u>Potential acidity</u> (lbs CaCO₃ to neutralize acidity produced by fertilizer); indicates a **likely DECREASE in substrate pH**
- <u>Potential basicity</u> (limestone needed to equal the acid neutralizing power of the fertilizer); indicates a **likely INCREASE in substrate pH**
- Alternating fertilizers may help to stabilize

Nitrogen Fertilizer and pH Relationship

^a Table adapted and re	evised from Paul Nelson: Greenhouse Operation and						
Management. p. 315. 6 th ed. Prentice Hall. New Jersey.							
	^b The percentage of total N in the ammonium plus urea forms; remaining N is						
required to neutraliz	^c Potential acidity is defined as the pounds of calcium carbonate limestone required to neutralize the acidity of 1 ton of fertilizer						
^d Potential basicity: a	pplying 1 ton of this fertilizer has the pH neutralizing						
effect of this many	effect of this many pounds of calcium carbonate limestone						
Neil Mattson, Roland Leatherwood, Cari Peters	Assistant Professor and Floriculture Extension Specialist, Cornell Postdoctoral Associate, Cornell J.R. Peters Inc.						

Fertilizer	NO ₃	NH4 ^b	Potential acidity ^c or basicity ^d
Ammonium sulfate	0	100	2200 a
Urea	0	100	1680 a
21-7-7 acid	0	100	1539 a
21-7-7 acid	0	100	1518 a
Diammonium phosphate	0	100	1400 a
Ammonium nitrate	51	49	1220 a
Monoammonium phosphate	0	100	1120 a
18-9-18	47.7	53.3	708 a
20-20-20	27.5	72.5	532 a
21-5-20	62.3	37.7	407 a
20-10-20	59.5	40.5	404 a
20-10-20	60	40	401 a
21-5-20	60	40	390 a
17-5-17	70.6	29.4	106 a
20-0-20	54	46	0
15-0-20	76.7	23.3	38 b
15-5-15	80	20	69 b
15-5-15	78.7	21.3	131 b
15-0-14	82.7	17.3	165 b
15-0-15	86.7	13.3	221 b
15-0-15	80.8	18.8	319 b
Calcium nitrate	100	0	400 b
Potassium nitrate	100	0	520 b
Sodium nitrate	100	0	580 b

Fertilizer Options for the Grower

- One-part mixes (All-Purpose)
 - Provide all the required nutrients in one bag
 - Pick desired concentration and measure out the required amount
 - Usually not for stock solutions, unless label says otherwise
- Two or three-part mixes, two stock tanks (Base plus Customizing)
 - N-P-K mix, $CaNO_3$, $MgSO_4$
 - Using two tanks, a concentrated stock solution can be made (no precipitation)
 - Tank A calcium and chelated iron
 - Tank B phosphates and sulfates
 - Separate tank for acid or add to Tank B

- Many-part mixes
 - Individual compound fertilizers can be used to formulate your own mix
 - Grower has full control over formulation
 - Cost effective for huge operations
 - Up to 11 fertilizers mixed and stored separately
- Liquid blends
 - Hobbyists
 - Easy to prepare but higher shipping costs

Element	Ionic form absorbed by plants	Common range (ppm=mg/l)			
Nitrogen	Nitrate (NO3 ⁻), Ammonium (NH4+)	100-250 ppm elemental N			
Phosphorus	Dihydrogen phosphate (H2PO4 ⁻) Phosphate (PO4 ³⁻) Monohydrogen phosphate (HPO4 ²⁻)	30-50 ppm elemental P			
Potassium	Potassium (K+)	100-300 ppm			
Calcium	Calcium (Ca ²⁺)	80-140 ppm			
Magnesium	Magnesium (Mg ²⁺)	30-70 ppm			
Sulfur	Sulfate (SO4 ²⁻)	50-120 ppm elemental S			
Iron	Ferrous ion (Fe ²⁺) Ferric ion (Fe3 ⁺)	1-5 ppm			
Copper	Copper (Cu ²⁺)	0.04-0.2 ppm			
Manganese	Manganese (Mn ²⁺)	0.5-1.0 ppm			
Zinc	Zinc (Zn ²⁺)	0.3-0.6 ppm			
Molybdenum	Molybdate (MoO4 ²⁻)	0.04-0.08 ppm			
Boron	Boric acid (H3BO3) Borate (H2BO3 ⁻)	0.2-0.5 ppm elemental B			
Chloride	Chloride (Cl ⁻)	<75 ppm			
Sodium	Sodium (Na ⁺)	<50 ppm TOXIC to plants			
Sodium	Sodium (Na ⁺)	<50 ppm TOXIC to plants			

Common Nutrient Ranges in Nutrient Solutions

Nutrient Solution Recipes: Open vs. Closed Systems

	Macronutrients (ppm)							Micronutrients (ppm)				EC (mS·cm ⁻¹)		
	NH_4	K	Ca	Mg	NO ₃	Р	SO ₄	Fe	Mn	Zn	В	Cu	Мо	
Open Systems														
Lettuce	9.8	379.5	116	12.1	140.0	31.0	96.0	1.00	0.55	0.25	0.30	0.05	0.05	1.30
Tomato	14.0	273.0	170	42.4	175.0	46.5	288.0	0.85	0.55	0.30	0.30	0.05	0.05	2.00
Cucumber	14.0	379.5	150	30.3	182.0	31.0	120.0	0.85	0.55	0.30	0.30	0.05	0.05	1.65
Pepper	4.2	358.8	180	42.4	179.2	37.2	192.0	0.85	0.55	0.30	0.30	0.05	0.05	1.80
						Cl	osed Sys	stems						
Lettuce	8.4	152.1	76	7.3	98.0	24.8	52.8	1.00	0.55	0.25	0.30	0.05	0.05	0.89
Tomato	11.2	187.2	86	26.6	124.5	37.2	124.8	0.85	0.55	0.24	0.20	0.05	0.05	1.21
Cucumber	11.2	175.5	106	21.8	134.4	31.0	86.4	0.85	0.55	0.30	0.30	0.05	0.05	1.24
Pepper	4.2	171.6	124	30.3	145.6	31.0	96.0	0.85	0.55	0.24	0.25	0.05	0.05	1.34

De Kreij et al. 1991 (Netherlands) and Deckers, 2004 (Belgium)

Compare

GUARANTEED ANALYSIS 5-11-26	GUARANTEED ANALYSIS 5-12-26 F1313
	Total nitrogen (N) 5%
Total Nitrogen (N)	5.00% nitrate nitrogen
5.0% Nitrate Nitrogen	Available phosphate (P2O5) 12%
•	Soluble potash (K ₂ O)
Available Phosphate (P_2O_5)	
Soluble Potash (K ₂ 0)	Sulfur (S)
Magnesium (Mg)	8.21% combined sulfur (S)
6.0% Water Soluble Magnesium (Mg)	0.2170 combined sundi (0)
	Boron (B) 0.0500%
Sulfur (S)	Copper (Cu)
8.0% Combined Sulfur (S)	0.0150% chelated copper (Cu)
Boron (B) 0.05%	Iron (Fe) 0.3000%
Copper (Cu) 0.015%	0.5000% chelated from (Fe)
	indigenees (init)
0.015% Chelated Copper (Cu)	0.0500% chelated manganese (Mn)
Iron (Fe) 0.3%	Molybdenum (Mo)
0.3% Chelated Iron (Fe)	Zinc (Zn) 0.0150% 0.0150% chelated zinc (Zn)
Manganese (Mn)	
0.05% Chelated Manganese (Mn)	sulfate, boric acid, iron DTPA, iron EDDHA, iron EDTA manganese EDTA,
	zinc EDTA, copper EDTA, ammonium molyhdate
Molybdenum (Mo)	
Zinc (Zn)	Information regarding the contents and levels of metals in this product is
0.015% Chelated Zinc (Zn)	Information regarding the contents and levels of metals in this product is available on the internet at: http://www.aapfco.org/metals.html
Derived from : Potassium Nitrate, Magnesium Sulfate, Monopotassium Phosphate, Iron EDTA, Manganese EDTA, Boric Acid, Zinc EDTA, Copper EDTA, Sodium Molybdate	WARNING: This product contains Molybdenum (Mo) and may be harmful to ruminant animals foraging on grass where applications have been made.

Always Compare Solution Composition

	Total	Peters Professional 5-11-26 (ppm)	Jacks Hydroponics 5-12-26 (ppm)
Nitrogen (all nitrate)	Ν	50	50
Phosphorus	Р	48	52
Potassium	K	216	215
Magnesium	Mg	60	63
Sulfate	SO_4	80	246
Iron	Fe	3	3
Manganese	Mn	0.50	0.50
Zinc	Zn	0.15	0.15
Copper	Cu	0.15	0.15
Boron	В	0.50	0.50
Molybdenum	Мо	0.10	0.10

PURDUE HORTICULTURE & AGRICULTURE LANDSCAPE ARCHITECTURE

Lettuce, Herbs, Leafy greens

Jack's Hydro-FeEd (16-4-17)

This is a 1-bag solution; use 355 g in 100 gal. water (dilute) or for each 1 gal. in a stock tank (using a 1:100 injector)

Jack's Hydroponic (5-12-26) + Calcium nitrate Tank A Tank B

284 g Calcium nitrate (15-0-0)

284 g 5-12-26

Modified Sonneveld's solution for lettuce Tank A Tank B

184.0 g Ca(NO3)2·3H2O 14.4 g NH4NO3 167.3 g KNO3 *3.8 g 10% Iron-DTPA Sprint 330 or Sequestrene 330 51.5 g KH₂PO₄ 93.1 g MgSO₄·7H₂0 *0.290g MnSO₄·H₂O *0.352g H3BO3 *0.023g Na2MoO4·2H2O *0.217g ZnSO4-7H2O *0.035g CuSO4.5H2O

Source: Neil Mattson and Cari Peters. A recipe for hydroponic success. InsideGrower.

Lettuce, Herbs,		Jack's Hydro-FeED (16-4-17)	Jack's Hydroponic (5-12-26) + Calcium nitrate	Modified Sonneveld's solution
Leafy	Nitrogen (N)	150	150	150
v	Phosphorus (P)	16	39	31
greens	Potassium (K)	132	162	210
	Calcium (Ca)	38	139	90
	Magnesium (Mg)	14	47	24
	Iron (Fe)	2.1	2.3	1.0
	Manganese (Mn)	0.47	0.38	0.25
	Zinc (Zn)	0.49	0.11	0.13
	Boron (B)	0.21	0.38	0.16
	Copper (Cu)	0.131	0.113	0.023
	Molydenum (Mo)	0.075	0.075	0.024

Source: Neil Mattson and Cari Peters. A recipe for hydroponic success. InsideGrower.

Target Nitrogen Feed Rates (ppm)

Туре	Propagation	Production			
Buttercrunch/Boston Bibb	125	150			
Romaine, Red and Green leaf	125	150			
Basil	125	175			
Culinary Herbs	125	150			
Cole Crops	125	175			
Garlic and Scallions	125	150			
Tomatoes	125	200			
Peppers	125	150			
Cucumber	125	175			
Heavy Feeders cabbage, kale, spinach, Swiss chard, mustard greens, mizuna, escarole	125	175 - 200			
Light Feeder Lettuce arugula, watercress, spring mix	125	125 - 150			
* Adapted from data collected at J.R.Peters Laboratory and Smithers Oasis Inc. 2012-2013					

Solution adjustment - Tomato Nutrition, K:N ratio

- Optimal ratio of K to N varies with growth stage
 - When the **first truss is in flower**, the K:N ratio should be **1.2:1**, which is the same K:N requirement as in most plants during the vegetative stage
 - This ratio increases to **2:1** as the **fruit load** on the plant **increases**, since about 70% of the potassium absorbed moves into the fruit
 - By the time the **ninth cluster flowers open**, the ratio should be **2.5:1**

Tomato Nutrient Solution Recipe

Table 6. Recipe for tomatoes inwinter according to crop growth stage(units are ppm).	Weeks 0-6 Higher N, Ca and Mg for vegetative growth	Weeks 6-12 Lower N, higher K for reproductive growth	Week 12+ Maintain balance of vegetative / reproductive growth
Nitrogen (N)	224	189	189
Phosphorus (P)	47	47	39
Potassium (K)	281	351	341
Calcium (Ca)	212	190	170
Magnesium (Mg)	65	60	48
Iron (Fe)	2.00	2.00	2.00
Manganese (Mn)	0.55	0.55	0.55
Zinc (Zn)	0.33	0.33	0.33
Boron (B)	0.28	0.28	0.28
Copper (Cu)	0.05	0.05	0.05
Molydenum (Mo)	0.05	0.05	0.05

Source: Sunco, Ltd., and University of Arizona, Controlled Environment Agriculture Center, http://tinyurl.com/ljlj785/

Information Resources

University resources – Extension publications

Professional magazines

- Greenhouse Management, <u>www.greenhousemag.com</u>
- Greenhouse Grower, <u>www.greenhousegrower.com</u>
- Greenhouse Canada, <u>www.greenhousecanada.com</u>

Books

- Greenhouse Technology and Management, Nicolas Castilla
- Greenhouse Operation and Management, Paul V. Nelson
- Soilless Culture, Michael Raviv & J. Heinrich Leith
- Growing Media for Ornamental Plants and Turf, Kevin Handreck & Niel Black
- Plant Nutrition of Greenhouse Crops, Cees Sonneveld & Wim Voogt
- Hydroponic Food Production, Howard M. Resh
- Tomatoes, Eb Heuvelink

Trade shows and conferences

- Great Lakes Fruit, Vegetable and Farm Market Expo & Michigan Greenhouse Growers Expo – Dec 4-6, 2018, Grand Rapids MI
- Indiana Horticulture Congress, Feb 12-14, 2019, Indianapolis IN
- Indiana Small Farm Conference, Feb 28 March 2, 2019, Danville IN
- Indoor Ag Con, April 17-19, 2019, Las Vegas NV
- Cultivate'19, July 13-16, 2019, Columbus OH

Manufacturers and distributors

(list is not complete but it's a good start):

- <u>http://www.tunnelberries.org/single-bay-high-tunnel-manufacturers.html</u>
- <u>http://www.tunnelberries.org/multi-bay-high-tunnel-manufacturers.html</u>

USDA NRCS Indiana EQIP Grant

- <u>https://www.nrcs.usda.gov/wps/portal/nrcs/main/in/programs/financial/eqip/</u>
- <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detail/in/te</u> <u>chnical/ecoscience/bio/?cid=nrcs144p2_068639</u>

THANK YOU

Contact details:

Dr. Petrus Langenhoven Horticulture and Hydroponics Crop Specialist **Department of Horticulture and Landscape Architecture Purdue University** Tel. no. 765-496-7955 Email: <u>plangenh@purdue.edu</u>