Random Utility without Regularity

Michel Regenwetter

Department of Psychology, University of Illinois at Urbana-Champaign

Winer Memorial Lectures 2018

Work w. J. Dana, C. Davis-Stober, J. Müller-Trede, M. Robinson

Thanks: NSF-DRMS SES-10-62045 & SES-14-59866.

< ロ > < 同 > < 回 > < 回 >

Outline

Random Utility & Random Preference

3 Context-Dependent Random Utility & Random Preference

Andom Utility without Regularity

5 Conclusions

Outline

- 2 Random Utility & Random Preference
- 3 Context-Dependent Random Utility & Random Preference
- 4 Random Utility without Regularity
- 5 Conclusions

2

イロン イ理 とく ヨン イヨン

Huge amounts of heterogeneity within and across decision makers.

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Huge amounts of heterogeneity within and across decision makers.

Psychological constructs (e.g., preferences) are moving targets!

< 日 > < 同 > < 回 > < 回 > < □ > <

Huge amounts of heterogeneity within and across decision makers.

Psychological constructs (e.g., preferences) are moving targets! They are subject to genuine qualitative variation.

Huge amounts of heterogeneity within and across decision makers.

Psychological constructs (e.g., preferences) are moving targets! They are subject to genuine qualitative variation.

I only use classical probability theory.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

2 Random Utility & Random Preference

3 Context-Dependent Random Utility & Random Preference

4 Random Utility without Regularity

5 Conclusions

Random Utility Model

Finite set ANoncoincident RVs: $\forall a, b \in A, a \neq b, \Pr(\mathbf{U}_a = \mathbf{U}_b) = 0$

Regenwetter

イロト 不得 トイヨト イヨト 二日

Random Utility Model

Finite set ANoncoincident RVs: $\forall a, b \in A, a \neq b, \Pr(\mathbf{U}_a = \mathbf{U}_b) = 0$

Random Utility Model for Best-Choice

$$P_X(x) = \Pr(\mathbf{U}_x = \max_{y \in X} \mathbf{U}_y), \qquad (x \in X \subseteq \mathcal{A}).$$

Regenwetter

Random Utility Model

Finite set ANoncoincident RVs: $\forall a, b \in A, a \neq b, \Pr(\mathbf{U}_a = \mathbf{U}_b) = 0$

Random Utility Model for Best-Choice

$$P_X(x) = \Pr(\mathbf{U}_x = \max_{y \in X} \mathbf{U}_y), \qquad (x \in X \subseteq \mathcal{A}).$$

Random Utility Model for Best-Worst-Choice

$$P_X(x,y) = \Pr(\mathbf{U}_x = \max_{v \in X} \mathbf{U}_v, \mathbf{U}_y = \min_{w \in X} \mathbf{U}_w), \qquad (x \neq y \in X \subseteq \mathcal{A}),$$

Random Utility \leftrightarrow Random Preference

Every joint realization of noncoincident RVs $(\mathbf{U}_x)_{x \in \mathcal{A}}$ generates a linear order \succ on \mathcal{A} .

Linear Order: Transitive, Asymmetric, Complete.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Random Utility \leftrightarrow Random Preference

Every joint realization of noncoincident RVs $(\mathbf{U}_x)_{x \in \mathcal{A}}$ generates a linear order \succ on \mathcal{A} .

Linear Order: Transitive, Asymmetric, Complete.

Every probability distribution on linear orders on \mathcal{A} can be represented with noncoincident RVs $(\mathbf{U}_x)_{x \in \mathcal{A}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Random Preference Model

 \mathcal{L} : the collection of all linear orders on \mathcal{A}

э

イロト イヨト イヨト イヨト

Random Preference Model

\mathcal{L} : the collection of all linear orders on \mathcal{A}

Random Preference Model for Best-Choice

$$P_X(x) = \sum_{\substack{\succ \in \mathcal{L} \ B_X(\succ) = x}} P(\succ), \qquad (\forall x \in X \subseteq \mathcal{A}).$$

Random Preference Model

\mathcal{L} : the collection of all linear orders on \mathcal{A}

Random Preference Model for Best-Choice

$$P_X(x) = \sum_{\substack{\succ \in \mathcal{L} \ B_X(\succ) = x}} P(\succ), \qquad (\forall x \in X \subseteq \mathcal{A}).$$

Random Preference Model for Best-Worst-Choice

$$P_X(x,y) = \sum_{\substack{\succ \in \mathcal{L} \\ \mathcal{B}W_X(\succ) = (x,y)}} P(\succ), \qquad (\forall x \neq y \in X \subseteq \mathcal{A}).$$

Random Preference Model for Binary Choice

 \mathcal{L} : the collection of all linear orders on \mathcal{A}

Random Preference Model for Best-Choice

$$P_{\{x,y\}}(x) = \sum_{\substack{\succ \in \mathcal{L} \\ x \succ y}} P(\succ), \qquad (\forall x \neq y \in \mathcal{A}).$$

Random Preference Model for Best-Worst-Choice

$$P_{\{x,y\}}(x,y) = \sum_{\substack{\succ \in \mathcal{L} \\ x \succ y}} P(\succ), \qquad (\forall x \neq y \in \mathcal{A}).$$

Regenwetter

< ロ > < 同 > < 回 > < 回 >

Random Utility & Random Preference

Binary Choice & Linear Ordering Polytope

Regenwetter

Winer Memorial Lectures 2018 10 / 40

э

Binary Choice & Linear Ordering Polytope

Triangle Inequalities (Block & Marschak, book, 1960)

$$P_{\{x,y\}}(x) + P_{\{y,z\}}(y) - P_{\{x,z\}}(x) \le 1 \quad (\forall x, y, z)$$

Regenwetter

Winer Memorial Lectures 2018 11 / 40

3

(a)

Binary Choice & Linear Ordering Polytope

Triangle Inequalities (Block & Marschak, book, 1960)

$$P_{\{x,y\}}(x) + P_{\{y,z\}}(y) - P_{\{x,z\}}(x) \le 1 \quad (\forall x, y, z)$$

$ \mathcal{A} $:	3	4	5	6	7	8	9
# FDI's:	2	10	20	910	87,472	> 4.8 $ imes$ 10 ⁸	unknown

3

Binary Choice & Linear Ordering Polytope

Test of Rationality (Transitivity) of Preference:

Regenwetter, Dana, Davis-Stober (Psychological Review, 2011).

_	$\sim \sim$	\sim	-		$\sim r$
		_		_	_

Outline

2 Random Utility & Random Preference

3 Context-Dependent Random Utility & Random Preference

4 Random Utility without Regularity

5 Conclusions

Description-Experience Gap

Binary choice among lotteries

H: Win \$4 with probability .8, otherwise \$0.

L: Win \$3 for sure.

< ロ > < 同 > < 回 > < 回 >

Description-Experience Gap

Binary choice among lotteries

H: Win \$4 with probability .8, otherwise \$0.

L: Win \$3 for sure.

Description-Experience Gap (Hertwig et al., Psych. Science, 2004)

Decision makers "overweight" small probabilities in description. Decision makers "underweight" small probabilities in experience.

Description-Experience Gap

Binary choice among lotteries

H: Win \$4 with probability .8, otherwise \$0.

L: Win \$3 for sure.

Description-Experience Gap (Hertwig et al., Psych. Science, 2004)

Decision makers "overweight" small probabilities in description. Decision makers "underweight" small probabilities in experience.

How about "context:" Description vs. Experience

Context-Dependent Random Preference for DE

Let $\mathcal{R}^{\{D,E\}}$ denote a finite collection of pairs of binary preference relations of the form (\succ^D, \succ^E) , where

 $x \succ^{D} y$ denotes that x is preferred to y in description $x \succ^{E} y$ denotes that x is preferred to y in experience

according to context-dependent preference pattern $(\succ^{D}, \succ^{E}) \in \mathcal{R}^{\{D,E\}}$.

Context-Dependent Random Preference for DE

CONTEXT-DEPENDENT RANDOM-PREFERENCE MODEL There is a probability distribution over $\mathcal{R}^{\{D,E\}}$ such that

$$P^{D}_{xy} = \sum_{\substack{(\succ^{D}, \succ^{E}) \in \mathcal{R}^{\{D,E\}}_{s.t.} \\ x \succ^{D}y}} P_{(\succ^{D}, \succ^{E})},$$

$$P_{xy}^{E} = \sum_{\substack{(\succ^{D}, \succ^{E}) \in \mathcal{R}^{\{D,E\}} \\ x \succ^{E}y}} P_{(\succ^{D}, \succ^{E})}$$

Random Preference Model

Regenwetter

Winer Memorial Lectures 2018 17 / 40

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Random Preference Model

Derived possible preferences from Cumulative Prospect Theory (Tversky & Kahneman, *J. of Risk & Uncertainty*, 1992)

Regenwetter

RUM without Regularity

Context-Independent RP of CPT with $\gamma, \delta < 1$

CPT with overweighting and $0 \leq \gamma^D = \gamma^E, \delta^D = \delta^E < 1$.

Context-Independent RP of CPT with $\gamma, \delta < 1$

CPT with overweighting and $0 \leq \gamma^D = \gamma^E, \delta^D = \delta^E < 1$.

	Description							Experience					
	1	2	3	4	5	6	1	2	3	4	5	6	
OV ₁	0	0	0	0	0	0	0	0	0	0	0	0	
OV ₂	0	0	0	0	0	1	0	0	0	0	0	1	
OV_3	0	0	0	1	0	0	0	0	0	1	0	0	
OV_4	0	0	0	1	0	1	0	0	0	1	0	1	
OV ₅	0	0	1	0	0	0	0	0	1	0	0	0	
OV_6	0	0	1	0	0	1	0	0	1	0	0	1	
OV_7	0	0	1	1	0	0	0	0	1	1	0	0	
OV ₈	0	0	1	1	0	1	0	0	1	1	0	1	
OV ₉	0	1	0	0	0	0	0	1	0	0	0	0	
												'	
OV32	1	1	1	1	1	1	1	1	1	1	1	1	

Context-Independent RP of CPT with $\gamma, \delta < 1$

CPT with overweighting and $0 \leq \gamma^{D} = \gamma^{E}, \delta^{D} = \delta^{E} < 1$.

	Description							Experience					
	1	2	3	4	5	6	1	2	3	4	5	6	
OV_1	0	0	0	0	0	0	0	0	0	0	0	0	
OV_2	0	0	0	0	0	1	0	0	0	0	0	1	
OV_3	0	0	0	1	0	0	0	0	0	1	0	0	
OV_4	0	0	0	1	0	1	0	0	0	1	0	1	
OV_5	0	0	1	0	0	0	0	0	1	0	0	0	
OV_6	0	0	1	0	0	1	0	0	1	0	0	1	
OV ₇	0	0	1	1	0	0	0	0	1	1	0	0	
OV_8	0	0	1	1	0	1	0	0	1	1	0	1	
OV ₉	0	1	0	0	0	0	0	1	0	0	0	0	
OV32	1	1	1	1	1	1	1	1	1	1	1	1	

 $P_{HL}(D6) = P_{HL}(E6) \ge P_{HL}(D5) = P_{HL}(E5)$

FDIs Context-Independent RP of CPT with $\gamma, \delta < 1$

Necessary and sufficient conditions for context-independent random preference model of CPT with overweighting.

$$\begin{array}{lll} P_{HL}(D6) = P_{HL}(E6) & \geq & P_{HL}(D5) = P_{HL}(E5), \\ P_{HL}(D2) = P_{HL}(E2) & \geq & P_{HL}(D1) = P_{HL}(E1), \\ & P_{HL}(D2) & \geq & P_{HL}(D5), \\ P_{HL}(D3) = P_{HL}(E3), & P_{HL}(D4) = P_{HL}(E4). \end{array}$$

イロン イ理 とく ヨン イヨン

Context-Dependent RP of CPT with $\gamma^{D}, \gamma^{E}, \delta^{D}, \delta^{E} < 1$

	Description					Experience							
	1	2	3	4	5	6	์ 1	2	3	4	5	6	
<i>OO</i> ₁	0	0	1	0	0	0	0	0	1	1	0	1	
<i>OO</i> ₂	0	0	1	1	0	0	0	0	1	0	0	1	
OO_3	0	0	1	0	0	0	0	0	1	0	0	1	
OO_4	0	0	1	0	0	0	0	0	0	1	0	1	
OO_5	0	0	0	1	0	0	0	0	1	0	0	1	
OO_6	0	0	1	0	0	0	0	0	0	0	0	1	
<i>OO</i> ₇	0	0	0	0	0	0	0	0	1	0	0	1	
OO_8	0	0	0	1	0	0	0	0	0	0	0	1	
OO_9	0	0	0	0	0	0	0	0	0	1	0	1	
<i>OO</i> ₁₀	0	0	0	0	0	0	0	0	1	1	0	1	
												,	
<i>OO</i> 659	1	1	0	1	1	1	1	1	0	1	1	1	
<i>OO</i> 660	1	1	1	1	1	1	1	1	1	1	1	1	

э

Context-Dependent RP of CPT with $\gamma^{D}, \gamma^{E}, \delta^{D}, \delta^{E} < 1$

	Description					Experience						
	1	2	3	4	5	6	์ 1	2	3	4	5	6
<i>OO</i> ₁	0	0	1	0	0	0	0	0	1	1	0	1
OO_2	0	0	1	1	0	0	0	0	1	0	0	1
OO_3	0	0	1	0	0	0	0	0	1	0	0	1
OO_4	0	0	1	0	0	0	0	0	0	1	0	1
OO_5	0	0	0	1	0	0	0	0	1	0	0	1
OO_6	0	0	1	0	0	0	0	0	0	0	0	1
<i>OO</i> ₇	0	0	0	0	0	0	0	0	1	0	0	1
OO_8	0	0	0	1	0	0	0	0	0	0	0	1
OO_9	0	0	0	0	0	0	0	0	0	1	0	1
<i>OO</i> ₁₀	0	0	0	0	0	0	0	0	1	1	0	1
<i>OO</i> 659	1	1	0	1	1	1	1	1	0	1	1	1
OO_{660}	1	1	1	1	1	1	1	1	1	1	1	1

$$\max\left(P_{HL}(E1), P_{HL}(D1), P_{HL}(D5)\right) \leq P_{HL}(D2)$$

э

20/40
FDIs Context-Dep. RP of CPT with
$$\gamma^{D}, \gamma^{E}, \delta^{D}, \delta^{E} < 1$$

Necessary and sufficient conditions for context-dependent random preference model of CPT with overweighting.

$$\begin{array}{lll} \max\left(P_{HL}(E1), P_{HL}(D1), P_{HL}(D5)\right) &\leq & P_{HL}(D2), \\ & & P_{HL}(E1) + P_{HL}(E5) &\leq & P_{HL}(E2) + P_{HL}(D1) + P_{HL}(D6), \\ & & P_{HL}(D6) + P_{HL}(E5) &\leq & 1 + P_{HL}(D2), \\ & & P_{HL}(E1) + P_{HL}(E6) &\leq & 1 + P_{HL}(D1), + P_{HL}(D6), \\ & P_{HL}(D6) + P_{HL}(E2) + P_{HL}(E5) &\leq & 1 + P_{HL}(D2) + P_{HL}(E6), \\ & P_{HL}(E1) + P_{HL}(E6) + P_{HL}(D2) &\leq & 1 + P_{HL}(E2) + P_{HL}(D1) + P_{HL}(D6), \\ & P_{HL}(D3) + P_{HL}(D4) &\leq & 1 + P_{HL}(E3) + P_{HL}(E4), \\ & \text{and first 7 Conditions hold with the labels E and D swapped.} \end{array}$$

3

Context-Dependent RP $\gamma^{D}, \delta^{D} < 1 < \gamma^{E}, \delta^{E}$

	Description				on		Experience					
	1	2	3	4	5	6	1	2	3	4	5	6
OU ₁	0	0	1	0	0	0	0	0	1	1	0	0
OU ₂	0	0	1	0	0	1	0	0	1	1	0	0
OU ₃	0	1	1	0	0	0	0	0	1	1	0	0
OU_4	0	1	1	0	0	1	0	0	1	1	0	0
OU ₅	0	1	1	0	1	1	0	0	1	1	0	0
OU ₆	0	0	1	0	0	0	1	0	1	1	0	0
OU_7	1	1	1	0	0	0	0	0	1	1	0	0
OU ₈	0	1	1	0	0	0	1	0	1	1	0	0
OU ₉	0	1	1	0	0	0	1	1	1	1	0	0
<i>OU</i> ₁₀	0	1	1	0	0	1	1	0	1	1	0	0
<i>OU</i> ₂₄₉	1	1	0	0	1	1	1	1	0	0	1	0
OU ₂₅₀	1	1	0	0	1	1	1	1	0	0	1	1

<ロ> <四> <四> <四> <四> <四</p>

Context-Dependent RP $\gamma^{D}, \delta^{D} < 1 < \gamma^{E}, \delta^{E}$

		De	scri	ipti	on		Experience						
	1	2	3	4	5	6	1	2	3	4	5	6	ĺ
OU ₁	0	0	1	0	0	0	0	0	1	1	0	0	ĺ
OU ₂	0	0	1	0	0	1	0	0	1	1	0	0	ĺ
OU ₃	0	1	1	0	0	0	0	0	1	1	0	0	ĺ
OU_4	0	1	1	0	0	1	0	0	1	1	0	0	ĺ
OU ₅	0	1	1	0	1	1	0	0	1	1	0	0	ĺ
OU ₆	0	0	1	0	0	0	1	0	1	1	0	0	
OU_7	1	1	1	0	0	0	0	0	1	1	0	0	ĺ
OU ₈	0	1	1	0	0	0	1	0	1	1	0	0	
OU ₉	0	1	1	0	0	0	1	1	1	1	0	0	ĺ
<i>OU</i> ₁₀	0	1	1	0	0	1	1	0	1	1	0	0	ĺ
<i>OU</i> ₂₄₉	1	1	0	0	1	1	1	1	0	0	1	0	ĺ
OU ₂₅₀	1	1	0	0	1	1	1	1	0	0	1	1	

$$\max\left(P_{HL}(E1), P_{HL}(D1), P_{HL}(D5)\right) \leq P_{HL}(D2)$$

Regenwetter

22/40

FDIs Context-Dependent RP $\gamma^{D}, \delta^{D} < 1 < \gamma^{E}, \delta^{E}$

Necessary and sufficient conditions for context-dependent random preference model of CPT with overweighting.

$$\begin{array}{rcl} {\cal P}_{HL}(E6) \leq {\cal P}_{HL}(E5) \leq {\cal P}_{HL}(E2) & \leq & {\cal P}_{HL}(D2) \\ & \max \left({\cal P}_{HL}(D1), {\cal P}_{HL}(D5) \right) & \leq & {\cal P}_{HL}(D2) \\ & \max \left({\cal P}_{HL}(D5), {\cal P}_{HL}(E5) \right) & \leq & {\cal P}_{HL}(D6) \\ & {\cal P}_{HL}(E2) & \leq & {\cal P}_{HL}(E1) \\ & {\cal P}_{HL}(E3) & \leq & {\cal P}_{HL}(E4) \\ & {\cal P}_{HL}(D1) + {\cal P}_{HL}(E5) & \leq & {\cal P}_{HL}(D2) + {\cal P}_{HL}(D5) \\ & {\cal P}_{HL}(D1) + {\cal P}_{HL}(D5) & \leq & {\cal P}_{HL}(D2) + {\cal P}_{HL}(E1) \\ & {\cal P}_{HL}(D6) + {\cal P}_{HL}(E1) & \leq & 1 + {\cal P}_{HL}(D2) \\ & {\cal P}_{HL}(D4) + {\cal P}_{HL}(E3) & \leq & 1 + {\cal P}_{HL}(D3) \\ & {\cal P}_{HL}(D1) + {\cal P}_{HL}(D4) & \leq & 1 + {\cal P}_{HL}(E4) \\ & {\cal P}_{HL}(D1) + {\cal P}_{HL}(D6) & \leq & 1 + {\cal P}_{HL}(E1) \\ \end{array}$$

イロン イ理 とく ヨン イヨン

Context-Dependent Random Utility & Random Preference

Statistical Analysis

Bayes Factors on Hertwig et al. (2004) data.

Context-independent overweighting:

 $\sim 10^{-8}$

Regenwetter

3

Context-Dependent Random Utility & Random Preference

Statistical Analysis

Bayes Factors on Hertwig et al. (2004) data.

Context-independent overweighting: Context-dependent overweighting: $\begin{array}{c} \sim 10^{-8} \\ 0.002 \end{array}$

Statistical Analysis

Bayes Factors on Hertwig et al. (2004) data.

Regenwetter & Robinson (Psychological Review, 2017).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Context (√)

2 Random Utility & Random Preference

3 Context-Dependent Random Utility & Random Preference

4 Random Utility without Regularity

5 Conclusions

Asymmetric Dominance

Jim shops for a new TV.

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy.

Regenwetter

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy. Option t (the "target") has better picture quality.

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy. Option t (the "target") has better picture quality. Option c (the "competitor") has better reliability.

< ロ > < 同 > < 回 > < 回 >

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy. Option t (the "target") has better picture quality. Option c (the "competitor") has better reliability. Only when Jim is shown a "decoy" option d that resembles t but is slightly worse, he feels inclined to choose t over both c and d.

ヘロト ヘ回ト ヘヨト ヘヨト

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy. Option t (the "target") has better picture quality. Option c (the "competitor") has better reliability. Only when Jim is shown a "decoy" option d that resembles t but is slightly worse, he feels inclined to choose t over both c and d.

Regularity:

$$X \subseteq Y \Rightarrow P_X(x) \ge P_Y(x) \quad (\forall x \in X).$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Asymmetric Dominance

Jim shops for a new TV. Faced with two options, he is unsure which one to buy. Option t (the "target") has better picture quality. Option c (the "competitor") has better reliability. Only when Jim is shown a "decoy" option d that resembles t but is slightly worse, he feels inclined to choose t over both c and d.

Regularity:

$$X \subseteq Y \Rightarrow P_X(x) \ge P_Y(x) \quad (\forall x \in X).$$

Violations of regularity are broadly viewed as violations of random utility models and random preference models in general.

Regenwetter

Random Utility Model for Best-Choice

$$P_X(x) = \Pr(\mathbf{U}_x = \max_{y \in X} \mathbf{U}_y), \qquad (x \in X \subseteq \mathcal{A}).$$

Random Preference Model for Best-Choice

$$P_X(x) = \sum_{\substack{\succ \in \mathcal{L} \ B_X(\succ) = x}} P(\succ), \qquad (\forall x \in X \subseteq \mathcal{A}).$$

D -				A
Re	ne	nw	/et	ter.
110	чv			

э

Falmagne (*JMP*,1978); Barberá & Pattanaik (*Econometrica*, 1986):

Necessary and sufficient conditions regardless of $|\mathcal{A}|$.

3

Falmagne (*JMP*,1978); Barberá & Pattanaik (*Econometrica*, 1986):

Necessary and sufficient conditions regardless of $|\mathcal{A}|$.

Equality constraints such as $\sum_{x \in X} P_X(x) = 1$. Inequality constraints

 $\sum_{Y: \ X \subseteq Y \subseteq \mathcal{A}} (-1)^{|Y \setminus X|} \ \mathcal{P}_Y(x) \geq 0, \qquad (\text{for all possible } x \in X \subseteq \mathcal{A}).$

Block-Marschak Polynomials

Block-Marschak Polynomials for $A = \{a, b, c\}$

$$egin{aligned} & P_{\mathcal{A}}(x) & \geq & 0, \qquad (orall x \in \mathcal{A}), \ & P_{X}(x) & \geq & P_{\mathcal{A}}(x), \quad (orall X \subset \mathcal{A}, |X| = 2), \ & 1 - P_{\{x,y\}}(x) - P_{\{x,z\}}(x) + P_{\mathcal{A}}(x) & \geq & 0, \quad (orall \{x,y,z\} = \{a,b,c\}), \ & ext{using } P_{\{x\}}(x) = 1) \end{aligned}$$

э

イロト イヨト イヨト イヨト

Block-Marschak Polynomials for $A = \{a, b, c\}$

$P_X(x) \geq P_{\mathcal{A}}(x), \quad (\forall X \subset \mathcal{A}, |X| = 2),$

Regenwetter

RUM without Regularity

◆□ ▶ ◆ □ ▶ ◆ Ξ ▶ ◆ Ξ ▶ ● Ξ • ○ Q ○

 Winer Memorial Lectures 2018
 30 / 40

Linear Ordering Polytope & Regularity

Fiorini (*JMP*, 2004) gave FDI's of Linear Ordering Polytope.

 V_1 : dct; V_3 : cdt, ctd; V_4 : dtc; V_7 : tdc; V_8 : tcd

A D A D A D A

Context-Dependence with Dominance

 $t \succ d, t \rhd d$

Regenwetter

RUM without Regularity

Winer Memorial Lectures 2018 32 / 40

э

イロン イ理 とく ヨン イヨン

Context-Dependence with Dominance

$t \succ d, t \rhd d$

	Binary	Best ch.		joint random utility
i	choice	from ${\cal A}$		in binary and best choice from ${\cal A}$
1	$t \succ d \succ c$	$t \rhd d \rhd c$	p_1	$[\mathbf{U}_t > \mathbf{U}_d > \mathbf{U}_c] \cap [\mathbf{V}_t > \mathbf{V}_d > \mathbf{V}_c]$
2	$t \succ d \succ c$	$t \triangleright c \triangleright d$	p_2	$[\mathbf{U}_t > \mathbf{U}_d > \mathbf{U}_c] \cap [\mathbf{V}_t > \mathbf{V}_c > \mathbf{V}_d]$
3	$t \succ d \succ c$	$c \triangleright t \triangleright d$	p_3	$[\mathbf{U}_t > \mathbf{U}_d > \mathbf{U}_c] \cap [\mathbf{V}_c > \mathbf{V}_t > \mathbf{V}_d]$
4	$t \succ c \succ d$	$t \rhd d \rhd c$	p_4	$[\mathbf{U}_t > \mathbf{U}_c > \mathbf{U}_d] \cap [\mathbf{V}_t > \mathbf{V}_d > \mathbf{V}_c]$
5	$t \succ c \succ d$	$t \triangleright c \triangleright d$	p_5	$[\mathbf{U}_t > \mathbf{U}_c > \mathbf{U}_d] \cap [\mathbf{V}_t > \mathbf{V}_c > \mathbf{V}_d]$
6	$t \succ c \succ d$	$c \triangleright t \triangleright d$	p_6	$[\mathbf{U}_t > \mathbf{U}_c > \mathbf{U}_d] \cap [\mathbf{V}_c > \mathbf{V}_t > \mathbf{V}_d]$
7	$c \succ t \succ d$	$t \triangleright d \triangleright c$	p_7	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{t} > \mathbf{V}_{d} > \mathbf{V}_{c}]$
8	$c \succ t \succ d$	$t \triangleright c \triangleright d$	p_8	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{t} > \mathbf{V}_{c} > \mathbf{V}_{d}]$
9	$c \succ t \succ d$	$c \rhd t \rhd d$	p_9	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{c} > \mathbf{V}_{t} > \mathbf{V}_{d}]$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Context-Dependence with Dominance

$$t\succ d, t\rhd d$$
 $P_{\{d,t\}}=P_{\mathcal{A}}(d)=0;$ $P_{\{c,t\}}(t)\geq P_{\{c,d\}}(d).$

 $V_4: t \succ d \succ c, c \rhd t \rhd d; \qquad V_5: c \succ t \succ d, t \rhd d \land t \rhd c$

Regenwetter

э

 $t \succ d, t \rhd d$.

Regenwetter

Winer Memorial Lectures 2018 34 / 40

э

 $t \succ d, t \triangleright d$. Require that $t \succ c \Rightarrow t \triangleright c$.

$t \succ d, t$	⊳ d .	Require	that $t \succ$	$c \Rightarrow$	$t \triangleright c$.
----------------	--------------	---------	----------------	-----------------	------------------------

	Binary	Best ch.		joint random utility
i	choice	from ${\cal A}$		in binary and best choice from ${\cal A}$
1	$t \succ d \succ c$	$t \rhd d \rhd c$	<i>p</i> ₁	$[\mathbf{U}_t > \mathbf{U}_d > \mathbf{U}_c] \cap [\mathbf{V}_t > \mathbf{V}_d > \mathbf{V}_c]$
2	$t \succ d \succ c$	$t \rhd c \rhd d$	<i>p</i> ₂	$[\mathbf{U}_t > \mathbf{U}_d > \mathbf{U}_c] \cap [\mathbf{V}_t > \mathbf{V}_c > \mathbf{V}_d]$
4	$t \succ c \succ d$	$t \rhd d \rhd c$	p_4	$[\mathbf{U}_t > \mathbf{U}_c > \mathbf{U}_d] \cap [\mathbf{V}_t > \mathbf{V}_d > \mathbf{V}_c]$
5	$t \succ c \succ d$	$t \triangleright c \triangleright d$	p_5	$[\mathbf{U}_t > \mathbf{U}_c > \mathbf{U}_d] \cap [\mathbf{V}_t > \mathbf{V}_c > \mathbf{V}_d]$
7	$c \succ t \succ d$	$t \rhd d \rhd c$	<i>p</i> ₇	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{t} > \mathbf{V}_{d} > \mathbf{V}_{c}]$
8	$c \succ t \succ d$	$t \triangleright c \triangleright d$	p_8	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{t} > \mathbf{V}_{c} > \mathbf{V}_{d}]$
9	$c \succ t \succ d$	$c \triangleright t \triangleright d$	p_9	$[\mathbf{U}_{c} > \mathbf{U}_{t} > \mathbf{U}_{d}] \cap [\mathbf{V}_{c} > \mathbf{V}_{t} > \mathbf{V}_{d}]$

・ロト ・ 四ト ・ ヨト ・ ヨト

 $t \succ d, t \triangleright d$. Require that $t \succ c \Rightarrow t \triangleright c$.

< 回 > < 三 > < 三 >

 $t \succ d, t \triangleright d$. Require that $t \succ c \Rightarrow t \triangleright c$.

$$oldsymbol{P}_{\{t,c\}}(t) \geq oldsymbol{P}_{\{d,c\}}(d); \quad oldsymbol{\mathsf{P}}_{\{\mathsf{t},\mathsf{c}\}}(\mathsf{t}) \leq oldsymbol{\mathsf{P}}_{\mathcal{A}}(\mathsf{t}).$$

< 回 > < 三 > < 三 >

Context defined by absence or presence of *d*.

Context defined by absence or presence of *d*.

$P_{\{c,d\}}(d) \geq P_{\mathcal{A}}(t)$

RUM without Regularity

Absence or presence of *d*; Asymm. dom.

Context defined by absence or presence of *d*. Require $t \succ c \Rightarrow t \triangleright c$.

$$\mathsf{P}_{\{c,d\}}(d) \geq \mathsf{P}_{\mathcal{A}}(t) \quad \mathsf{P}_{\{\mathsf{t},\mathsf{c}\}}(\mathsf{t}) \leq \mathsf{P}_{\mathcal{A}}(\mathsf{t}).$$

< 同 ト < 三 ト < 三 ト

Statistical Analysis

Bayes Factors	
Context-independent RUM (regularity):	.004
Model 1A:	2.00
Model 1B (reverse regularity):	6.01
Model 2A:	1.99
Model 2B (reverse regularity):	3.00

Work with Johannes Müller-Trede.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Outline

Context (√)

2 Random Utility & Random Preference

3 Context-Dependent Random Utility & Random Preference

4) Random Utility without Regularity

5 Conclusions

3

Context-Dependent Random Utility Model

Context-dependent Random Utility Model for Best-Choice

$$P_X^{\Gamma}(x) = \Pr(\mathbf{U}_x^{\Gamma} = \max_{y \in X} \mathbf{U}_y^{\Gamma}),$$

(for all possible $x \in X \subseteq A$),

Regenwetter

Context-Dependent Random Utility Model

Context-dependent Random Utility Model for Best-Choice

$$P_X^{\Gamma}(x) = \Pr(\mathbf{U}_x^{\Gamma} = \max_{y \in X} \mathbf{U}_y^{\Gamma}), \quad \text{(for all possible } x \in X \subseteq \mathcal{A}),$$

Context-dependent Random Utility Model for Best-Worst-Choice

$$\mathcal{P}_X^{\Gamma}(x,y) = \Pr(\mathbf{U}_x^{\Gamma} = \max_{v \in X} \mathbf{U}_v^{\Gamma}, \mathbf{U}_y^{\Gamma} = \min_{w \in X} \mathbf{U}_w^{\Gamma}), \qquad (x \neq y \in X \subseteq \mathcal{A}),$$

Regenwetter

Winer Memorial Lectures 2018 40 / 40

Conclusions

Building a context-dependent RUM or RP model

www.regenwetterlab.org regenwet@illinois.edu

R	le	α	e	'n	w	e	tt	e	r

RUM without Regularity

Winer Memorial Lectures 2018 41 / 40
Building a context-dependent RUM or RP model

• List every permissible best (best-worst) choice for every context.

www.regenwetterlab.org regenwet@illinois.edu

R	eα	er	ıw	et	ter
•••	~9	Υ.		<u> </u>	

Building a context-dependent RUM or RP model

- List every permissible best (best-worst) choice for every context.
- These patterns define the vertices of a convex polytope.

www.regenwetterlab.org regenwet@illinois.edu

R	eα	er	ıw	et	ter
•••	~9	Υ.		<u> </u>	

Building a context-dependent RUM or RP model

- List every permissible best (best-worst) choice for every context.
- These patterns define the vertices of a convex polytope.
- Use math or software to characterize facet-structure.

www.regenwetterlab.org

regenwet@illinois.edu

Building a context-dependent RUM or RP model

- List every permissible best (best-worst) choice for every context.
- These patterns define the vertices of a convex polytope.
- Use math or software to characterize facet-structure.
- Use order-constrained freq. or Bayesian inference (e.g., QTEST)

www.regenwetterlab.org

regenwet@illinois.edu