The sheaf-theoretic description of contextuality
Part II: contextuality and valuation algebras

Samson Abramsky & Giovanni Carù

Quantum Group
Department of Computer Science
University of Oxford

Winer Memorial Lectures
Purdue University, 10 November 2018
Introduction

The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in

- Relational databases (Abramsky 2013)
- Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
- Logic (Abramsky, Barbosa, Kishida, Lal, Mansfield 2015)

This leads to the idea of developing a contextual semantics, an all-comprehensive theory which captures the essence of all such contextual phenomena.

All the different instances of contextuality share a common trait: they concern pieces of information, which agree locally, but disagree globally.
The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in

- Relational databases (Abramsky 2013)
- Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
- Logic (Abramsky, Barbosa, Kishida, Lal, Mansfield 2015)

This leads to the idea of developing a contextual semantics, an all-comprehensive theory which captures the essence of all such contextual phenomena.
Introduction

The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in

- Relational databases (Abramsky 2013)
The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in

- Relational databases (Abramsky 2013)
- Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
Introduction

- The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in
 - Relational databases (Abramsky 2013)
 - Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
 - Logic (Abramsky, Barbosa, Kishida, Lal, Mansfield 2015)
Introduction

- The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in
 - Relational databases (Abramsky 2013)
 - Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
 - Logic (Abramsky, Barbosa, Kishida, Lal, Mansfield 2015)

- This leads to the idea of developing a **contextual semantics**, an all-comprehensive theory which captures the essence of all such contextual phenomena.
Introduction

- The high level of generality of the sheaf theoretic description of contextuality led to unexpected connections with fields unrelated to quantum mechanics: contextual behaviour has been observed in
 - Relational databases (Abramsky 2013)
 - Constraint satisfaction problems (Abramsky, Gottlob, Kolaitis 2013)
 - Logic (Abramsky, Barbosa, Kishida, Lal, Mansfield 2015)

- This leads to the idea of developing a **contextual semantics**, an all-comprehensive theory which captures the essence of all such contextual phenomena.

- All the different instances of contextuality share a common trait: they concern pieces of **information**, which agree locally, but disagree globally.
Valuation algebras

Valuation algebras are a general framework to model concepts such as information and knowledge.

Definition

Let V be a set of variables. A valuation algebra over V is a set Φ equipped with three operations:

1. Labelling: $\Phi \rightarrow \mathcal{P}(V) :: \phi \mapsto d(\phi)$

2. Combination: $\Phi \times \Phi \rightarrow \Phi :: (\phi, \psi) \mapsto \phi \otimes \psi$

3. Projection: $\Phi \times \mathcal{P}(V) \rightarrow \Phi :: (\phi, S) \mapsto \phi_{\downarrow S}$, for all $S \subseteq d(\phi)$, such that axioms (A1)–(A6) are satisfied:

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Valuation algebras

- **Valuation algebras** are a general framework to model concepts such as information and knowledge.
Valuation algebras

- **Valuation algebras** are a general framework to model concepts such as information and knowledge.

Definition

Let V be a set of variables. A **valuation algebra** over V is a set Φ equipped with three operations:

1. **Labelling**: $\Phi \rightarrow \mathcal{P}(V) :: \phi \mapsto d(\phi)$
2. **Combination**: $\Phi \times \Phi \rightarrow \Phi :: (\phi, \psi) \mapsto \phi \otimes \psi$
3. **Projection**: $\Phi \times \mathcal{P}(V) \rightarrow \Phi :: (\phi, S) \mapsto \phi \downarrow S$, for all $S \subseteq d(\phi)$, such that axioms (A1)–(A6) are satisfied:
Valuation algebras

- **Valuation algebras** are a general framework to model concepts such as information and knowledge.

Definition

Let V be a set of variables. A **valuation algebra** over V is a set Φ equipped with three operations:

1. **Labelling:** $\Phi \rightarrow \mathcal{P}(V) :: \phi \mapsto d(\phi)$
Valuation algebras

- Valuation algebras are a general framework to model concepts such as information and knowledge.

Definition

Let V be a set of variables. A valuation algebra over V is a set Φ equipped with three operations:

1. Labelling: $\Phi \to 2^V :: \phi \mapsto d(\phi)$
2. Combination: $\Phi \times \Phi \to \Phi :: (\phi, \psi) \mapsto \phi \otimes \psi$
Valuation algebras

- **Valuation algebras** are a general framework to model concepts such as information and knowledge.

Definition

Let V be a set of variables. A **valuation algebra** over V is a set Φ equipped with three operations:

1. **Labelling:** $\Phi \rightarrow \mathcal{P}(V) :: \phi \mapsto \mathcal{d}(\phi)$
2. **Combination:** $\Phi \times \Phi \rightarrow \Phi :: (\phi, \psi) \mapsto \phi \otimes \psi$
3. **Projection:** $\Phi \times \mathcal{P}(V) \rightarrow \Phi :: (\phi, S) \mapsto \phi\downarrow S$, for all $S \subseteq \mathcal{d}(\phi)$,

such that axioms (A1)–(A6) are satisfied:
Axioms for a valuation algebra
Axioms for a valuation algebra

(A1) Commutative Semigroup:
\((\Phi, \otimes)\) is associative and commutative.

(A2) Labelling: For all \(\phi, \psi \in \Phi\),
\[d(\phi \otimes \psi) = d(\phi) \cup d(\psi)\]

(A3) Projection: Given \(\phi \in \Phi\) and \(S \subseteq d(\phi)\),
\[d(\phi \downarrow S) = S\]

(A4) Transitivity: Given \(\phi \in \Phi\) and \(S \subseteq T \subseteq d(\phi)\),
\[d(\phi \downarrow T) \downarrow S = d(\phi \downarrow S)\]

(A5) Combination: For \(\phi, \psi \in \Phi\), with \(d(\phi) = S, d(\psi) = T\) and \(U \subseteq V\) such that \(S \subseteq U \subseteq S \cup T\),
\[d(\phi \otimes \psi) \downarrow U = d(\phi \otimes \psi) \downarrow U \cap T\]

(A6) Domain: Given \(\phi \in \Phi\),
\[\phi \downarrow d(\phi) = \phi\]
Axioms for a valuation algebra

(A1) **Commutative Semigroup**: \((\Phi, \otimes)\) is associative and commutative.
Axioms for a valuation algebra

(A1) **Commutative Semigroup**: (Φ, \otimes) is associative and commutative.

(A2) **Labelling**: For all $\phi, \psi \in \Phi$,

$$d(\phi \otimes \psi) = d(\phi) \cup d(\psi)$$
Axioms for a valuation algebra

(A1) **Commutative Semigroup**: \((\Phi, \otimes)\) is associative and commutative.

(A2) **Labelling**: For all \(\phi, \psi \in \Phi\),
\[
d(\phi \otimes \psi) = d(\phi) \cup d(\psi)
\]

(A3) **Projection**: Given \(\phi \in \Phi\) and \(S \subseteq d(\phi)\),
\[
d\left(\phi^\downarrow_S\right) = S
\]
Axioms for a valuation algebra

(A1) **Commutative Semigroup:** (Φ, \otimes) is associative and commutative.

(A2) **Labelling:** For all $\phi, \psi \in \Phi$,

$$d(\phi \otimes \psi) = d(\phi) \cup d(\psi)$$

(A3) **Projection:** Given $\phi \in \Phi$ and $S \subseteq d(\phi)$,

$$d(\phi \downarrow S) = S$$

(A4) **Transitivity:** Given $\phi \in \Phi$ and $S \subseteq T \subseteq d(\phi)$,

$$\left(\phi \downarrow T\right) \downarrow S = \phi \downarrow S$$
Axioms for a valuation algebra

(A1) **Commutative Semigroup**: \((\Phi, \otimes)\) is associative and commutative.

(A2) **Labelling**: For all \(\phi, \psi \in \Phi\),

\[
d(\phi \otimes \psi) = d(\phi) \cup d(\psi)
\]

(A3) **Projection**: Given \(\phi \in \Phi\) and \(S \subseteq d(\phi)\),

\[
d\left(\phi \downarrow S\right) = S
\]

(A4) **Transitivity**: Given \(\phi \in \Phi\) and \(S \subseteq T \subseteq d(\phi)\),

\[
\left(\phi \downarrow T\right) \downarrow S = \phi \downarrow S
\]

(A5) **Combination**: For \(\phi, \psi \in \Phi\), with \(d(\phi) = S\), \(d(\psi) = T\) and \(U \subseteq V\) such that \(S \subseteq U \subseteq S \cup T\),

\[
(\phi \otimes \psi) \downarrow U = \phi \otimes \psi \downarrow U \cap T
\]
Axioms for a valuation algebra

(A1) **Commutative Semigroup:** \((\Phi, \otimes)\) is associative and commutative.

(A2) **Labelling:** For all \(\phi, \psi \in \Phi\),

\[d(\phi \otimes \psi) = d(\phi) \cup d(\psi)\]

(A3) **Projection:** Given \(\phi \in \Phi\) and \(S \subseteq d(\phi)\),

\[d(\phi \downarrow_s) = S\]

(A4) **Transitivity:** Given \(\phi \in \Phi\) and \(S \subseteq T \subseteq d(\phi)\),

\[(\phi \downarrow_T) \downarrow_s = \phi \downarrow_s\]

(A5) **Combination:** For \(\phi, \psi \in \Phi\), with \(d(\phi) = S\), \(d(\psi) = T\) and \(U \subseteq V\) such that \(S \subseteq U \subseteq S \cup T\),

\[(\phi \otimes \psi) \downarrow_U = \phi \otimes \psi \downarrow_{U \cap T}\]

(A6) **Domain:** Given \(\phi \in \Phi\),

\[\phi \downarrow_{d(\phi)} = \phi\]
Axioms for a valuation algebra

The elements of Φ are called valuations. A set of valuations is called a knowledgebase. A set of variables $D \subseteq V$ is called a domain. The domain of a valuation $\varphi \in \Phi$ is the set $d(\varphi) = \{x_1, \ldots, x_n\} \subseteq V$, which constitutes the domain of φ. For any finite set of variables $S \subseteq V$, we denote by $\Phi_S = \{\varphi \in \Phi | d(\varphi) = S\}$ the set of valuations with domain S. Thus, we have $\Phi = \bigcup S \subseteq V \Phi_S$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Axioms for a valuation algebra

The elements of Φ are called valuations.
Axioms for a valuation algebra

The elements of Φ are called **valuations**. A set of valuations is called a **knowledgebase**.
Axioms for a valuation algebra

The elements of Φ are called **valuations**. A set of valuations is called a **knowledgebase**. A set of variables $D \subseteq V$ is called a **domain**.
Axioms for a valuation algebra

The elements of Φ are called **valuations**. A set of valuations is called a **knowledgebase**. A set of variables $D \subseteq V$ is called a **domain**. The **domain of a valuation** ϕ is the set $d(\phi)$.
Axioms for a valuation algebra

The elements of Φ are called **valuations**. A set of valuations is called a **knowledgebase**. A set of variables $D \subseteq V$ is called a **domain**. The **domain of a valuation** ϕ is the set $d(\phi)$.

Intuitively, a valuation $\phi \in \Phi$ represents information about the possible values of a finite set of variables $d(\phi) = \{x_1, \ldots, x_n\} \subseteq V$, which constitutes the domain of ϕ.
Axioms for a valuation algebra

The elements of Φ are called \textbf{valuations}. A set of valuations is called a \textbf{knowledgebase}. A set of variables $D \subseteq V$ is called a \textbf{domain}. The \textbf{domain of a valuation} ϕ is the set $d(\phi)$.

Intuitively, a valuation $\phi \in \Phi$ represents information about the possible values of a finite set of variables $d(\phi) = \{x_1, \ldots, x_n\} \subseteq V$, which constitutes the domain of ϕ. For any finite set of variables $S \subseteq V$, we denote by

$$\Phi_S := \{\phi \in \Phi \mid d(\phi) = S\}$$

the set of valuations with domain S. Thus, we have

$$\Phi = \bigcup_{S \subseteq V} \Phi_S.$$
Information algebras

It is often desirable to add additional postulates, which collectively give rise to the notion of information algebra.

Definition

Let Φ be a valuation algebra on V. We say that Φ has neutral elements if it satisfies

$$(A7) \text{ Commutative monoid: For each } S \subseteq V, \text{ there exists a neutral element } e_S \in \Phi_S \text{ such that } \phi \otimes e_S = e_S \otimes \phi = \phi \text{ for all } \phi \in \Phi_S.$$

Such neutral elements must satisfy the following identity:

$$e_S \otimes e_T = e_{S \cup T}$$

for all subsets $S, T \subseteq V$.

Information algebras

- It is often desirable to add additional postulates, which collectively give rise to the notion of information algebra.
Information algebras

- It is often desirable to add additional postulates, which collectively give rise to the notion of information algebra

Definition

Let Φ be a valuation algebra on V.
Information algebras

- It is often desirable to add additional postulates, which collectively give rise to the notion of information algebra

Definition
Let Φ be a valuation algebra on V.
- We say that Φ has neutral elements if it satisfies
Information algebras

- It is often desirable to add additional postulates, which collectively give rise to the notion of **information algebra**

Definition

Let Φ be a valuation algebra on V.

- We say that Φ has **neutral elements** if it satisfies

 (A7) *Commutative monoid*: For each $S \subseteq V$, there exists a neutral element $e_S \in \Phi_S$ such that

 $$\phi \otimes e_S = e_S \otimes \phi = \phi$$

 for all $\phi \in \Phi_S$. Such neutral elements must satisfy the following identity:

 $$e_S \otimes e_T = e_{S \cup T}$$

 for all subsets $S, T \subseteq V$.
Information algebras

We say that Φ has null elements if it satisfies

(A8) Nullity: For each $S \subseteq V$ there exists a null element $z_S \in \Phi_S$ such that $\phi \otimes z_S = z_S \otimes \phi = z_S$.

Moreover, for all $S, T \subseteq V$ such that $S \subseteq T$, we have, for each $\phi \in \Phi_T$,

$\phi \downarrow S \iff \phi = z_T$.

We say that Φ is idempotent if it satisfies

(A9) Idempotency: For all $\phi \in \Phi$ and $S \subseteq d(\phi)$, it holds that $\phi \otimes \phi \downarrow S = \phi$.

If Φ satisfies axioms (A7)–(A9) it is called an information algebra.
Information algebras

We say that Φ has **null elements** if it satisfies

$$\text{Nullity: For each } S \subseteq V \text{ there exists a null element } z_S \in \Phi_S \text{ such that } \phi \otimes z_S = z_S \otimes \phi = z_S.$$

Moreover, for all $S, T \subseteq V$ such that $S \subseteq T$, we have, for each $\phi \in \Phi_T$,

$$\phi \downarrow S \iff \phi = z_T.$$

We say that Φ is **idempotent** if it satisfies

$$\text{Idempotency: For all } \phi \in \Phi \text{ and } S \subseteq d(\phi), \text{ it holds that } \phi \otimes \phi \downarrow S = \phi.$$

If Φ satisfies axioms (A7)–(A9) it is called an **information algebra**.
We say that Φ has **null elements** if it satisfies

(A8) *Nullity*: For each $S \subseteq V$ there exists a *null element* $z_S \in \Phi_S$ such that

$$\phi \otimes z_S = z_S \otimes \phi = z_S.$$

Moreover, for all $S, T \subseteq V$ such that $S \subseteq T$, we have, for each $\phi \in \Phi_T$,

$$\phi \downarrow^S = z_S \iff \phi = z_T.$$
Information algebras

- We say that Φ has **null elements** if it satisfies

 (A8) *Nullity*: For each $S \subseteq V$ there exists a *null element* $z_S \in \Phi_S$ such that

 $$\phi \otimes z_S = z_S \otimes \phi = z_S.$$

 Moreover, for all $S, T \subseteq V$ such that $S \subseteq T$, we have, for each $\phi \in \Phi_T$,

 $$\phi \downarrow S = z_S \iff \phi = z_T.$$

- We say that Φ is **idempotent** if it satisfies
Information algebras

- We say that \(\Phi \) has **null elements** if it satisfies

\[(A8) \text{ } \text{Nullity: For each } S \subseteq V \text{ there exists a null element } z_S \in \Phi_S \text{ such that} \]
\[
\phi \otimes z_S = z_S \otimes \phi = z_S.
\]

Moreover, for all \(S, T \subseteq V \) such that \(S \subseteq T \), we have, for each \(\phi \in \Phi_T \),
\[
\phi \downarrow^S = z_S \iff \phi = z_T.
\]

- We say that \(\Phi \) is **idempotent** if it satisfies

\[(A9) \text{ } \text{Idempotency: For all } \phi \in \Phi \text{ and } S \subseteq d(\phi), \text{ it holds that} \]
\[
\phi \otimes \phi \downarrow^S = \phi
\]
Information algebras

- We say that Φ has **null elements** if it satisfies

 (A8) **Nullity**: For each $S \subseteq V$ there exists a null element $z_S \in \Phi_S$ such that

 $\phi \otimes z_S = z_S \otimes \phi = z_S$.

 Moreover, for all $S, T \subseteq V$ such that $S \subseteq T$, we have, for each $\phi \in \Phi_T$,

 $\phi \downarrow^S = z_S \iff \phi = z_T$.

- We say that Φ is **idempotent** if it satisfies

 (A9) **Idempotency**: For all $\phi \in \Phi$ and $S \subseteq d(\phi)$, it holds that

 $\phi \otimes \phi \downarrow^S = \phi$

If Φ satisfies axioms (A7)–(A9) it is called an **information algebra**.

Frames and tuples

For each variable \(x \in V \), we denote by \(\Omega_x \) its frame, i.e. the set of possible values for \(x \).

A tuple with finite domain \(S \subseteq V \) is an element \(x \) of \(\Omega_S = \prod_{x \in S} \Omega_x \).

We will denote by \(x \downarrow T \) the cartesian projection of a tuple \(x \in \Omega_S \) to \(\Omega_T \), where \(T \subseteq S \).
Frames and tuples

For each variable \(x \in V \), we denote by \(\Omega_x \) its \textbf{frame}, i.e. the set of possible values for \(x \).
Frames and tuples

- For each variable \(x \in V \), we denote by \(\Omega_x \) its **frame**, i.e. the set of possible values for \(x \).
- A **tuple** with finite domain \(S \subseteq V \) is an element \(\mathbf{x} \) of

\[
\Omega_S := \prod_{x \in S} \Omega_x
\]
Frames and tuples

For each variable $x \in V$, we denote by Ω_x its **frame**, i.e. the set of possible values for x.

A **tuple** with finite domain $S \subseteq V$ is an element x of

$$\Omega_S := \prod_{x \in S} \Omega_x$$

We will denote by $x_{\downarrow T}$ the cartesian projection of a tuple $x \in \Omega_S$ to Ω_T, where $T \subseteq S$.
Examples
Information algebra of R-distributions
Examples

Information algebra of R-distributions

Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
Examples
Information algebra of R-distributions

- Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
- Define a valuation algebra Φ:
Examples

Information algebra of R-distributions

- Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
- Define a valuation algebra Φ:
 - **Valuations**: functions

 $$
 \phi : \Omega_S \longrightarrow R.
 $$

 such that

 $$
 \sum_{x \in \Omega_S} \phi(x) = 1.
 $$
Examples

Information algebra of R-distributions

- Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
- Define a valuation algebra Φ:
 - **Valuations**: functions
 \[\phi : \Omega_S \longrightarrow R. \]
 such that
 \[\sum_{x \in \Omega_S} \phi(x) = 1. \]
 - **Labelling**: Given $\phi : \Omega_S \rightarrow R$, define $d(\phi) := S$.

The algebra has neutral elements and null elements, but it is idempotent only if $R = B$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Examples

Information algebra of R-distributions

- Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
- Define a valuation algebra Φ:
- **Valuations**: functions

 $$\phi : \Omega_S \longrightarrow R.$$

 such that

 $$\sum_{x \in \Omega_S} \phi(x) = 1.$$

 - **Labelling**: Given $\phi : \Omega_S \rightarrow R$, define $d(\phi) := S$.
 - **Combination**: For all distributions $\phi \in \Phi_S$, $\psi \in \Phi_T$, define, for all $x \in \Omega_{S \cup T}$,

 $$(\phi \otimes \psi)(x) := \left(\sum_{y \in \Omega_{S \cup T}} \phi(y) \downarrow_S \cdot \psi(y) \downarrow_T \right)^{-1} \phi(x) \downarrow_S \cdot \psi(x) \downarrow_T.$$
Examples

Information algebra of R-distributions

- Let $\langle R, +, \cdot, 0, 1 \rangle$ be a commutative semiring and V a set of variables.
- Define a valuation algebra Φ:
- **Valuations**: functions
 \[\phi : \Omega_S \rightarrow R. \]
 such that
 \[\sum_{x \in \Omega_S} \phi(x) = 1. \]

 - **Labelling**: Given $\phi : \Omega_S \rightarrow R$, define $d(\phi) := S$.
 - **Combination**: For all distributions $\phi \in \Phi_S$, $\psi \in \Phi_T$, define, for all $x \in \Omega_{S \cup T}$,
 \[(\phi \otimes \psi)(x) := \left(\sum_{y \in \Omega_{S \cup T}} \phi(y_{\downarrow S}) \cdot \psi(y_{\downarrow T}) \right)^{-1} \phi(x_{\downarrow S}) \cdot \psi(x_{\downarrow T}). \]
 - **Projection**: For all $\phi \in \Phi_S$, $T \subseteq S$ and $x \in \Omega_T$, define
 \[\phi_{\downarrow T}(x) := \sum_{y \in \Omega_{S \setminus T}} \phi(x, y). \]
Examples

Information algebra of \(R \)-distributions

- Let \(\langle R, +, \cdot, 0, 1 \rangle \) be a commutative semiring and \(V \) a set of variables.
- Define a valuation algebra \(\Phi \):
 - **Valuations**: functions
 \[
 \phi : \Omega_S \longrightarrow R.
 \]
 such that
 \[
 \sum_{x \in \Omega_S} \phi(x) = 1.
 \]

 - **Labelling**: Given \(\phi : \Omega_S \rightarrow R \), define \(d(\phi) := S \).

 - **Combination**: For all distributions \(\phi \in \Phi_S, \psi \in \Phi_T \), define, for all \(x \in \Omega_{S \cup T} \),
 \[
 (\phi \otimes \psi)(x) := \left(\sum_{y \in \Omega_{S \cup T}} \phi(y_{\downarrow S}) \cdot \psi(y_{\downarrow T}) \right)^{-1} \phi(x_{\downarrow S}) \cdot \psi(x_{\downarrow T}).
 \]

 - **Projection**: For all \(\phi \in \Phi_S \), \(T \subseteq S \) and \(x \in \Omega_T \), define
 \[
 \phi_{\downarrow T}(x) := \sum_{y \in \Omega_{S \setminus T}} \phi(x, y).
 \]

- The algebra has neutral elements and null elements, but it is idempotent only if \(R = \mathbb{B} \).
Examples

Relational databases

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
</tbody>
</table>

Each column is labelled by an attribute. Each entry of the table is a tuple specifying a value for each of the attributes. The full table is simply a set of tuples, i.e. a relation. The set of attributes of a relation \(R \) is called its schema, denoted \(\text{schema}(R) \). A database instance is a family of relations.
Examples
Relational databases

Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Examples
Relational databases

Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each column is labelled by an **attribute**.
Examples
Relational databases

Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each column is labelled by an attribute.
Each entry of the table is a tuple specifying a value for each of the attributes.
Examples
Relational databases

- Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Each column is labelled by an attribute.
- Each entry of the table is a tuple specifying a value for each of the attributes.
- The full table is simply a set of tuples, i.e. a relation.
Examples
Relational databases

Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each column is labelled by an **attribute**.

Each entry of the table is a **tuple** specifying a value for each of the attributes.

The full table is simply a set of tuples, i.e. a **relation**.

The set of attributes of a relation R is called its **schema**, denoted $\text{schema}(R)$.
Examples
Relational databases

Consider the following data table:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>11,245.75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each column is labelled by an attribute.
Each entry of the table is a tuple specifying a value for each of the attributes.
The full table is simply a set of tuples, i.e. a relation.
The set of attributes of a relation R is called its schema, denoted $\text{schema}(R)$.
A database instance is a family of relations.
Examples
Information algebra of relational databases

Define a valuation algebra Φ such that...

Let $S \subseteq V$.

The neutral element is e_S.

The null element is z_S.
Examples
Information algebra of relational databases

Define a valuation algebra Φ such that

- The set of variables V coincides with the set of all attributes.
Examples
Information algebra of relational databases

Define a valuation algebra Φ such that
- The set of variables V coincides with the set of all attributes.
- For each $x \in V$, define the frame Ω_x to be the set of possible values for x.
Examples

Information algebra of relational databases

Define a valuation algebra Φ such that

- The set of variables V coincides with the set of all attributes.
- For each $x \in V$, define the frame Ω_x to be the set of possible values for x.
- A valuation over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.
Define a valuation algebra Φ such that

- The set of variables V coincides with the set of all attributes.
- For each $x \in V$, define the frame Ω_x to be the set of possible values for x.
- A valuation over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.
 - Labelling: For all $R \in \Phi_S$, define $d(R) := S$.

Define a valuation algebra Φ such that

- The set of **variables** V coincides with the set of all **attributes**.
- For each $x \in V$, define the **frame** Ω_x to be the set of possible values for x.
- A **valuation** over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.

 - **Labelling**: For all $R \in \Phi_S$, define $d(R) := S$.
 - **Combination** given by the **natural join**: let $R_1 \in \Phi_S$, $R_2 \in \Phi_T$,
 \[
 R_1 \otimes R_2 := R_1 \Join R_2 = \{ x \in \Omega_{S \cup T} \mid x_{\downarrow S} \in R_1 \land x_{\downarrow T} \in R_2 \},
 \]
 which is clearly **idempotent**.
Examples
Information algebra of relational databases

Define a valuation algebra Φ such that

- The set of variables V coincides with the set of all attributes.
- For each $x \in V$, define the frame Ω_x to be the set of possible values for x.
- A valuation over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.
 - Labelling: For all $R \in \Phi_S$, define $d(R) := S$.
 - Combination given by the natural join: let $R_1 \in \Phi_S$, $R_2 \in \Phi_T$,
 $$R_1 \otimes R_2 := R_1 \Join R_2 = \{x \in \Omega_{S \cup T} \mid x_{\downarrow S} \in R_1 \land x_{\downarrow T} \in R_2\},$$
 which is clearly idempotent.
 - Projection: Given a valuation R with domain $d(R) = S$, and a subset $T \subseteq S$, define
 $$R^{\downarrow T} := \{x_{\downarrow T} \mid x \in R\}$$
Examples
Information algebra of relational databases

Define a valuation algebra Φ such that

- The set of **variables** V coincides with the set of all **attributes**.
- For each $x \in V$, define the **frame** Ω_x to be the set of possible values for x.
- A **valuation** over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.
 - **Labelling**: For all $R \in \Phi_S$, define $d(R) := S$.
 - **Combination** given by the **natural join**: let $R_1 \in \Phi_S$, $R_2 \in \Phi_T$,
 \[R_1 \otimes R_2 := R_1 \Join R_2 = \{ x \in \Omega_{S \cup T} \mid x_{\downarrow S} \in R_1 \land x_{\downarrow T} \in R_2 \}, \]
 which is clearly **idempotent**.
 - **Projection**: Given a valuation R with domain $d(R) = S$, and a subset $T \subseteq S$, define
 \[R_{\downarrow T} := \{ x_{\downarrow T} \mid x \in R \} \]
- Let $S \subseteq V$.

Examples
Information algebra of relational databases

Define a valuation algebra \(\Phi \) such that

- The set of variables \(V \) coincides with the set of all attributes.
- For each \(x \in V \), define the frame \(\Omega_x \) to be the set of possible values for \(x \).
- A valuation over \(S \subseteq V \) is a set of tuples \(R \subseteq \Omega_S \), thus \(\Phi_S = \mathcal{P}(\Omega_S) \).
 - **Labelling**: For all \(R \in \Phi_S \), define \(d(R) := S \).
 - **Combination** given by the natural join: let \(R_1 \in \Phi_S \), \(R_2 \in \Phi_T \),

\[
R_1 \otimes R_2 := R_1 \Join R_2 = \{ x \in \Omega_{S \cup T} \mid x_{\downarrow_S} \in R_1 \land x_{\downarrow_T} \in R_2 \},
\]

which is clearly **idempotent**.
 - **Projection**: Given a valuation \(R \) with domain \(d(R) = S \), and a subset \(T \subseteq S \), define

\[
R^{\uparrow_T} := \{ x_{\downarrow_T} \mid x \in R \}
\]

Let \(S \subseteq V \). The **neutral element** is \(e_S := \Omega_S \).
Examples

Information algebra of relational databases

Define a valuation algebra Φ such that

- The set of variables V coincides with the set of all attributes.
- For each $x \in V$, define the frame Ω_x to be the set of possible values for x.
- A valuation over $S \subseteq V$ is a set of tuples $R \subseteq \Omega_S$, thus $\Phi_S = \mathcal{P}(\Omega_S)$.

 - **Labelling:** For all $R \in \Phi_S$, define $d(R) := S$.
 - **Combination** given by the natural join: let $R_1 \in \Phi_S$, $R_2 \in \Phi_T$,

 $$R_1 \otimes R_2 := R_1 \Join R_2 = \{x \in \Omega_{S \cup T} \mid x_{\downarrow S} \in R_1 \land x_{\downarrow T} \in R_2\},$$

 which is clearly idempotent.
 - **Projection:** Given a valuation R with domain $d(R) = S$, and a subset $T \subseteq S$, define

 $$R_{\downarrow T} := \{x_{\downarrow T} \mid x \in R\}$$

- Let $S \subseteq V$. The neutral element is $e_S := \Omega_S$. The null element is $z_S := \emptyset$.
Examples

The algebra of relational databases can be generalised by elevating the concept of tuple to a higher level:

Definition

A tuple system over $P(V)$, where V is a set of variables, is a set T equipped with two operations $d: T \to P(V)$ and $\downarrow: T \times P(V) \to T$ satisfying the following axioms:

1. (T1) If $Q \subseteq d(t)$, then $d(t \downarrow Q) = Q$.
2. (T2) If $Q \subseteq U \subseteq d(t)$, then $(t \downarrow U) \downarrow Q = t \downarrow Q$.
3. (T3) If $d(t) = Q$, then $t \downarrow Q = t$.
4. (T4) For $d(t) = Q$, $d(u) = U$ such that $t \downarrow Q \cap U = u \downarrow Q \cap U$, there exists $g \in T$ such that $d(g) = Q \cup U$, $g \downarrow Q = t$ and $g \downarrow U = u$.
5. (T5) For $d(t) = Q$ and $Q \subseteq U$, there exists $g \in T$ such that $d(g) = U$ and $g \downarrow Q = t$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Examples

- The algebra of relational databases can be generalised by elevating the concept of **tuple** to a higher level:
Examples

- The algebra of relational databases can be generalised by elevating the concept of **tuple** to a higher level:

Definition

A **tuple system** over \(\mathcal{P}(V)\), where \(V\) is a set of variables, is a set \(T\) equipped with two operations \(d: T \rightarrow \mathcal{P}(V)\) and \(\downarrow: T \times \mathcal{P}(V) \rightarrow T\) satisfying the following axioms:

(T1) If \(Q \subseteq d(t)\), then \(d(t_{\downarrow Q}) = Q\).

(T2) If \(Q \subseteq U \subseteq d(t)\), then \((t_U)_{\downarrow Q} = t_{\downarrow Q}\).

(T3) If \(d(t) = Q\), then \(t_{\downarrow Q} = t\).

(T4) For \(d(t) = Q, d(u) = U\) such that \(t_{\downarrow Q \cap U} = u_{\downarrow Q \cap U}\), there exists \(g \in T\) such that \(d(g) = Q \cup U\), \(g_{\downarrow Q} = t\) and \(g_{\downarrow U} = u\).

(T5) For \(d(t) = Q\) and \(Q \subseteq U\), there exists \(g \in T\) such that \(d(g) = U\) and \(g_{\downarrow Q} = t\).
Examples
General information sets
Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:
Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

- **Valuations** are subsets $S \subseteq T_Q := \{ t_Q : t \in T \}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

 - **Valuations** are subsets $S \subseteq T_Q := \{t \downarrow_Q : t \in T\}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.
 - **Labelling**: For all $S \in \Phi_Q$, define $d(S) := Q$.
Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

- **Valuations** are subsets $S \subseteq T_Q := \{ t_{\downarrow Q} \mid t \in T \}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.
 - **Labelling**: For all $S \in \Phi_Q$, define $d(S) := Q$.
 - **Combination** given by the **natural join**: let $S_1 \in \Phi_Q$, $S_2 \in \Phi_U$,

 $$S_1 \otimes S_2 := S_1 \Join S_2 = \{ t \in T_{Q \cup U} \mid t_{\downarrow S} \in S_1 \land t_{\downarrow U} \in S_2 \},$$

 which is clearly **idempotent**.
Examples
General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

- **Valuations** are subsets $S \subseteq T_Q := \{ t_{\downarrow Q} : t \in T \}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.
 - **Labelling**: For all $S \in \Phi_Q$, define $d(S) := Q$.
 - **Combination** given by the **natural join**: let $S_1 \in \Phi_Q$, $S_2 \in \Phi_U$,
 \[S_1 \otimes S_2 := S_1 \Join S_2 = \{ t \in T_{Q \cup U} \mid t_{\downarrow S_1} \in S_1 \land t_{\downarrow U} \in S_2 \}, \]
 which is clearly **idempotent**.
 - **Projection**: Given a valuation S with domain $d(S) = Q$, and a subset $U \subseteq Q$, define
 \[S_{\downarrow U} := \{ t_{\downarrow U} : t \in S \} \]
Examples

General information sets

- Given any tuple system \(T \) on a set of variables \(V \), one can define an information algebra of information sets relative to it:
 - **Valuations** are subsets \(S \subseteq T_Q := \{ t \downarrow_Q : t \in T \} \), where \(Q \subseteq V \). Thus \(\Phi_Q := \mathcal{P}(T_Q) \).
 - **Labelling**: For all \(S \in \Phi_Q \), define \(d(S) := Q \).
 - **Combination** given by the **natural join**: let \(S_1 \in \Phi_Q, S_2 \in \Phi_U \),
 \[
 S_1 \otimes S_2 := S_1 \bowtie S_2 = \{ t \in T_{Q \cup U} | t \downarrow_s \in S_1 \land t \downarrow_U \in S_2 \},
 \]
 which is clearly **idempotent**.
 - **Projection**: Given a valuation \(S \) with domain \(d(S) = Q \), and a subset \(U \subseteq Q \), define
 \[
 S \downarrow^U := \{ t \downarrow_U | t \in S \}
 \]
- Given any \(Q \subseteq V \), the **neutral element** is \(e_Q := T_Q := \{ t \in T : d(T) = Q \} \).
Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

- **Valuations** are subsets $S \subseteq T_Q := \{ \downarrow_Q t : t \in T \}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.
 - **Labelling**: For all $S \in \Phi_Q$, define $d(S) := Q$.
 - **Combination** given by the **natural join**: let $S_1 \in \Phi_Q, S_2 \in \Phi_U$,

 $$S_1 \otimes S_2 := S_1 \bowtie S_2 = \{ t \in T_{Q \cup U} | t_s \in S_1 \land t_u \in S_2 \},$$

 which is clearly **idempotent**.
 - **Projection**: Given a valuation S with domain $d(S) = Q$, and a subset $U \subseteq Q$, define

 $$S_{\downarrow U} := \{ t_u | t \in S \}$$

- Given any $Q \subseteq V$, the **neutral element** is $e_Q := T_Q := \{ t \in T : d(T) = Q \}$. The **null element** is $z_Q := \emptyset$.

Examples

General information sets

- Given any tuple system T on a set of variables V, one can define an information algebra of information sets relative to it:

- **Valuations** are subsets $S \subseteq T_Q := \{ t \downarrow Q : t \in T \}$, where $Q \subseteq V$. Thus $\Phi_Q := \mathcal{P}(T_Q)$.

 - **Labelling**: For all $S \in \Phi_Q$, define $d(S) := Q$.
 - **Combination** given by the **natural join**: let $S_1 \in \Phi_Q, S_2 \in \Phi_U$,

 $$S_1 \otimes S_2 := S_1 \smallfrown S_2 = \{ t \in T_Q \cup U : t \downarrow S \in S_1 \land t \downarrow U \in S_2 \},$$

 which is clearly **idempotent**.

 - **Projection**: Given a valuation S with domain $d(S) = Q$, and a subset $U \subseteq Q$, define

 $$S \downarrow U := \{ t \downarrow U : t \in S \}$$

- Given any $Q \subseteq V$, the **neutral element** is $e_Q := T_Q := \{ t \in T : d(T) = Q \}$. The **null element** is $z_Q := \emptyset$. Thus, we obtain an **information algebra**.
Examples
General information sets

- Cartesian tuples (cartesian projection) \Rightarrow relational databases
- Probability distributions (marginalisation) \Rightarrow probability distribution information sets
- Propositional truth valuations $v: L \rightarrow \{0, 1\}$ (function restriction) \Rightarrow propositional information sets

More generally, given any logical 'context' $\langle L, M, | = \rangle$, one can define both an algebra of information sets, and an algebra of formulae, e.g. \rightarrow-Predicate logic \rightarrow-Linear equations \rightarrow-Constraint satisfaction problems \rightarrow...
Examples
General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example
Examples
General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \rightsquigarrow *relational databases*.
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \leadsto **relational databases**.
- *Probability distributions* (marginalisation) \leadsto **probability distribution information sets**
Examples
General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \leadsto **relational databases**.
- *Probability distributions* (marginalisation) \leadsto **probability distribution information sets**
- *Propositional truth valuations* $v : \mathcal{L} \rightarrow \{0, 1\}$ (function restriction) \leadsto **propositional information sets**
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \leadsto **relational databases**.
- *Probability distributions* (marginalisation) \leadsto **probability distribution information sets**
- *Propositional truth valuations* $v : \mathcal{L} \rightarrow \{0, 1\}$ (function restriction) \leadsto **propositional information sets**
- *Propositional formulae* (existential quantification) \leadsto **algebra of propositional formulae**
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \leadsto **relational databases**.
- *Probability distributions* (marginalisation) \leadsto **probability distribution information sets**
- *Propositional truth valuations* $v : \mathcal{L} \rightarrow \{0, 1\}$ (function restriction) \leadsto **propositional information sets**
- *Propositional formulae* (existential quantification) \leadsto **algebra of propositional formulae**
- More generally, given any logical ‘context’ $\langle \mathcal{L}, M, \models \rangle$, one can define both an algebra of information sets, and an algebra of formulae, e.g.
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- *Cartesian tuples* (cartesian projection) \leadsto **relational databases**.
- *Probability distributions* (marginalisation) \leadsto **probability distribution information sets**
- *Propositional truth valuations* $v : \mathcal{L} \rightarrow \{0, 1\}$ (function restriction) \leadsto **propositional information sets**
- *Propositional formulae* (existential quantification) \leadsto **algebra of propositional formulae**
- More generally, given any logical ‘context’ $\langle \mathcal{L}, M, \models \rangle$, one can define both an algebra of information sets, and an algebra of formulae, e.g.
 - *Predicate logic*
Examples
General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- **Cartesian tuples** (cartesian projection) \leadsto **relational databases**.
- **Probability distributions** (marginalisation) \leadsto **probability distribution information sets**
- **Propositional truth valuations** $v : \mathcal{L} \rightarrow \{0, 1\}$ (function restriction) \leadsto **propositional information sets**
- **Propositional formulae** (existential quantification) \leadsto **algebra of propositional formulae**
- More generally, given any logical ‘context’ $\langle \mathcal{L}, \mathcal{M}, \models \rangle$, one can define both an algebra of information sets, and an algebra of formulae, e.g.
 - **Predicate logic**
 - **Linear equations**
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- **Cartesian tuples** (cartesian projection) \(\leadsto\) **relational databases**.
- **Probability distributions** (marginalisation) \(\leadsto\) **probability distribution information sets**
- **Propositional truth valuations** \(v : \mathcal{L} \to \{0, 1\}\) (function restriction) \(\leadsto\) **propositional information sets**
- **Propositional formulae** (existential quantification) \(\leadsto\) **algebra of propositional formulae**
- More generally, given any logical ‘context’ \(\langle \mathcal{L}, \mathbb{M}, \models \rangle\), one can define both an algebra of information sets, and an algebra of formulae, e.g.
 - *Predicate logic*
 - *Linear equations*
 - *Constraint satisfaction problems*
Examples

General information sets

Any instance of a tuple system gives rise to a different information algebra:

Example

- **Cartesian tuples** (cartesian projection) \(\rightsquigarrow \) relational databases.
- **Probability distributions** (marginalisation) \(\rightsquigarrow \) probability distribution information sets
- **Propositional truth valuations** \(v : \mathcal{L} \to \{0, 1\} \) (function restriction) \(\rightsquigarrow \) propositional information sets
- **Propositional formulae** (existential quantification) \(\rightsquigarrow \) algebra of propositional formulae
- More generally, given any logical ‘context’ \(\langle \mathcal{L}, \mathcal{M}, \models \rangle \), one can define both an algebra of information sets, and an algebra of formulae, e.g.
 - **Predicate logic**
 - **Linear equations**
 - **Constraint satisfaction problems**
 - …
Disagreement

Disagreement between sources is a fundamental aspect of information. Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of extracting information (more on that later).

We propose a natural formulation:

Consider a valuation algebra Φ on a set of variables V, let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase, with $D = \bigcup_{i=1}^{n} d(\phi_i)$.

To say that the information sources agree is equivalent to say that there is a truth which is agreed upon by all the sources. The truth valuation gives information about all the variables appearing in K, while each ϕ_i only concerns a set of the variables $d(\phi_i) \subseteq D$.

Definition: We say that ϕ_1, \ldots, ϕ_n agree (or agree globally) if there exists a (global) truth valuation $\gamma \in \Phi^D$ such that, for all $1 \leq i \leq n$, $\gamma \downarrow d(\phi_i) = \phi_i$.

Samson Abramsky & Giovanni Carù (Oxford CS) Contextuality and valuation algebras Winer Memorial Lectures 2018
Disagreement

Disagreement between sources is a fundamental aspect of information.
Disagreement

- **Disagreement** between sources is a fundamental aspect of information.
- Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of *extracting information* (more on that later).
Disagreement

- **Disagreement** between sources is a fundamental aspect of information.
- Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of *extracting information* (more on that later).
- We propose a natural formulation:
Disagreement

- **Disagreement** between sources is a fundamental aspect of information.
- Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of *extracting information* (more on that later).
- We propose a natural formulation:
- Consider a valuation algebra Φ on a set of variables V, let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase, with

$$D := \bigcup_{i=1}^n d(\phi_i).$$
Disagreement

- **Disagreement** between sources is a fundamental aspect of information.
- Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of *extracting information* (more on that later).
- We propose a natural formulation:
- Consider a valuation algebra Φ on a set of variables V, let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase, with

$$D := \bigcup_{i=1}^{n} d(\phi_i).$$

To say that the information sources agree is equivalent to say that there is a truth which is agreed upon by all the sources.
Disagreement

- **Disagreement** between sources is a fundamental aspect of information.
- Despite this, there is no general definition of disagreement in the valuation algebraic approach, which focuses more on the problem of *extracting information* (more on that later).
- We propose a natural formulation:
- Consider a valuation algebra Φ on a set of variables V, let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase, with

 \[
 D := \bigcup_{i=1}^{n} d(\phi_i).
 \]

 To say that the information sources agree is equivalent to say that there is a *truth* which is agreed upon by all the sources.
- The truth valuation gives information about all the variables appearing in K, while each ϕ_i only concerns a set of the variables $d(\phi_i) \subseteq D$.

Definition

We say that ϕ_1, \ldots, ϕ_n agree (or agree globally) if there exists a (global) truth valuation $\gamma \in \Phi_D$ such that, for all $1 \leq i \leq n$,

\[
\gamma_{\upharpoonright d(\phi_i)} = \phi_i.
\]
Local disagreement

A necessary condition for global agreement is that each pair of information sources agree at their common variables. This property is captured by the notion of local agreement:

Definition

Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. We say that K agrees locally if $\downarrow_d(\phi_i) \cap \downarrow_d(\phi_j) \subseteq \downarrow_d(\phi_i) \cup \downarrow_d(\phi_j)$ for all $1 \leq i, j \leq n$.

Clearly, agreement implies local agreement.
Local disagreement

- A necessary condition for global agreement is that each pair of information sources agree at their common variables.
Local disagreement

- A necessary condition for global agreement is that each pair of information sources agree at their common variables.
- This property is captured by the notion of **local agreement**:

Definition

Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. We say that K **agrees locally** if

$$\phi_i \downarrow d(\phi_i) \cap d(\phi_j) = \phi_j \downarrow d(\phi_i) \cap d(\phi_j)$$

for all $1 \leq i, j \leq n$.
Local disagreement

- A necessary condition for global agreement is that each pair of information sources agree at their common variables.
- This property is captured by the notion of **local agreement**:

Definition

Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. We say that K agrees locally if

$$\phi_i \downarrow d(\phi_i) \cap d(\phi_j) = \phi_j \downarrow d(\phi_i) \cap d(\phi_j)$$

for all $1 \leq i, j \leq n$.

- Clearly, agreement implies local agreement.
Valuations algebras and sheaf theory

Remarkably, many properties of valuations algebras can be described by sheaf theory. Let Φ be a valuation algebra on a set of variables V. Consider the powerset $\mathcal{P}(V)$ as a discrete topological space. We can describe Φ as a presheaf:

$$
\Phi : \mathcal{P}(V)^{\text{op}} \to \text{Set}
$$

by letting $\Phi(S) = \Phi_S$ for all $S \subseteq V$ and $\Phi(S \subseteq T) : \Phi_T \to \Phi_S$:: $\phi \mapsto \phi \downarrow T$.

Functoriality is guaranteed by axioms (A4) and (A6), indeed, for all $S \subseteq V$ and for all $\phi \in \Phi_S$, $\rho_S \rho_S(\phi) = \phi \downarrow S = \phi \downarrow \text{d}(\phi)$ (A6) = ϕ, and, by (A4), for all $S \subseteq T \subseteq U \subseteq V$ and $\phi \in \Phi_U$, $\rho_T \rho_U(\phi) = (\phi \downarrow T) \downarrow S$ (A4) = $\phi \downarrow S = \rho_U \rho_S(\phi)$.

In general, this description does not capture composition.
Valuations algebras and sheaf theory

- Remarkably, many properties of valuations algebras can be described by sheaf theory.
Valuations algebras and sheaf theory

- Remarkably, many properties of valuations algebras can be described by sheaf theory.
- Let Φ be a valuation algebra on a set of variables V. Consider the powerset $\mathcal{P}(V)$ as a discrete topological space.
Valuations algebras and sheaf theory

- Remarkably, many properties of valuations algebras can be described by sheaf theory.
- Let Φ be a valuation algebra on a set of variables V. Consider the powerset $\mathcal{P}(V)$ as a discrete topological space.
- We can describe Φ as a presheaf:

$$\Phi : \mathcal{P}(V)^{op} \longrightarrow \text{Set}$$

by letting $\Phi(S) := \Phi_S$ for all $S \subseteq V$ and

$$\Phi(S \subseteq T) := \rho^T_S : \Phi_T \longrightarrow \Phi_S : \phi \longmapsto \phi_{\downarrow T}.$$
Valuations algebras and sheaf theory

Remarkably, many properties of valuations algebras can be described by sheaf theory.

Let \(\Phi \) be a valuation algebra on a set of variables \(V \). Consider the powerset \(\mathcal{P}(V) \) as a discrete topological space.

We can describe \(\Phi \) as a presheaf:

\[
\Phi : \mathcal{P}(V)^{op} \rightarrow \text{Set}
\]

by letting \(\Phi(S) := \Phi_S \) for all \(S \subseteq V \) and

\[
\Phi(S \subseteq T) := \rho^T_S : \Phi_T \rightarrow \Phi_S \quad \text{::} \quad \phi \mapsto \phi_{\downarrow T}.
\]

Functoriality is guaranteed by axioms (A4) and (A6), indeed, for all \(S \subseteq V \) and for all \(\phi \in \Phi_S \),

\[
\rho^S_S(\phi) = \phi_{\downarrow S} = \phi_{\downarrow d(\phi)} \overset{(A6)}{=} \phi,
\]

In general, this description does not capture composition.
Valuations algebras and sheaf theory

- Remarkably, many properties of valuations algebras can be described by sheaf theory.
- Let Φ be a valuation algebra on a set of variables V. Consider the powerset $\mathcal{P}(V)$ as a discrete topological space.
- We can describe Φ as a presheaf:

$$\Phi : \mathcal{P}(V)^{op} \longrightarrow \text{Set}$$

by letting $\Phi(S) := \Phi_S$ for all $S \subseteq V$ and

$$\Phi(S \subseteq T) := \rho^T_S : \Phi_T \longrightarrow \Phi_S :: \phi \longmapsto \phi \downarrow^T.$$

- Functoriality is guaranteed by axioms (A4) and (A6), indeed, for all $S \subseteq V$ and for all $\phi \in \Phi_S$,

$$\rho^S_S(\phi) = \phi \downarrow^S = \phi \downarrow^{d(\phi)} \overset{(A6)}{=} \phi,$$

and, by (A4), for all $S \subseteq T \subseteq U \subseteq V$ and $\phi \in \Phi_U$,

$$\rho^T_S \circ \rho^U_T(\phi) = \left(\phi \downarrow^T\right) \downarrow^S \overset{(A4)}{=} \phi \downarrow^S = \rho^U_S(\phi).$$
Valuations algebras and sheaf theory

Remarkably, many properties of valuations algebras can be described by sheaf theory.

Let Φ be a valuation algebra on a set of variables V. Consider the powerset $\mathcal{P}(V)$ as a discrete topological space.

We can describe Φ as a presheaf:

$$\Phi : \mathcal{P}(V)^{op} \rightarrow \text{Set}$$

by letting $\Phi(S) := \Phi_S$ for all $S \subseteq V$ and

$$\Phi(S \subseteq T) := \rho^T_S : \Phi_T \rightarrow \Phi_S :: \phi \mapsto \phi_{\downarrow T}.$$

Functoriality is guaranteed by axioms (A4) and (A6), indeed, for all $S \subseteq V$ and for all $\phi \in \Phi_S$,

$$\rho^S_S(\phi) = \phi_{\downarrow S} = \phi_{\downarrow d(\phi)} \overset{(A6)}{=} \phi,$$

and, by (A4), for all $S \subseteq T \subseteq U \subseteq V$ and $\phi \in \Phi_U$,

$$\rho^T_S \circ \rho^U_T(\phi) = \left(\phi_{\downarrow T}\right)_{\downarrow S} \overset{(A4)}{=} \phi_{\downarrow S} = \rho^U_S(\phi).$$

In general, this description does not capture composition.
Disagreement and sheaf theory

We can rephrase the definitions of local and global disagreement in sheaf theoretic terms:

Definition

Let \(U \subseteq P(V) \), with \(D = \bigcup U \).

A set of local sections \(\{ s_U \in \Phi(U) \} \) \(U \in U \) of \(\Phi \) agrees locally if it is compatible.

It agrees globally if there exists a global section \(\gamma \in \Phi(D) \) such that \(\gamma|_U = s_U \) for all \(U \in U \).
Disagreement and sheaf theory

We can rephrase the definitions of local and global disagreement in sheaf theoretic terms:

Definition

Let $\mathcal{U} \subseteq \mathcal{P}(V)$, with $D := \bigcup \mathcal{U}$.
Disagreement and sheaf theory

- We can rephrase the definitions of local and global disagreement in sheaf theoretic terms:

Definition

Let $\mathcal{U} \subseteq \mathcal{P}(V)$, with $D := \bigcup \mathcal{U}$.

- A set of local sections $\{s_U \in \Phi(U)\}_{U \in \mathcal{U}}$ of Φ agrees **locally** if it is compatible.
We can rephrase the definitions of local and global disagreement in sheaf theoretic terms:

Definition

Let $\mathcal{U} \subseteq \mathcal{P}(V)$, with $D := \bigcup \mathcal{U}$.

- A set of local sections $\{s_U \in \Phi(U)\}_{U \in \mathcal{U}}$ of Φ agrees locally if it is compatible.
- It agrees globally if there exists a global section $\gamma \in \Phi(D)$ such that

 $$\gamma|_U = s_U$$

 for all $U \in \mathcal{U}$.
Recall that an empirical model on a scenario $\langle X, M, (O_m)_{m \in X} \rangle$ is a compatible family $e = \{ e_C \}_{C \in M}$ for the presheaf $D_{R(E)}$. This can be seen as a locally agreeing knowledgebase of the valuation algebra of R-distributions. We say that e is non-contextual if there exists a global R-distribution $g \in D_{R(E)}(X)$ such that $g|_C = e_C$, for all $C \in M$. Therefore, contextuality simply arises as an instance of a locally agreeing knowledgebase that disagrees globally. This is a very general concept, which has meaningful realisations in many fields captured by the valuation algebraic framework.
Recall that an empirical model on a scenario $\langle X, \mathcal{M}, (O_m)_{m \in X} \rangle$ is a compatible family $e = \{e_C\}_{C \in \mathcal{M}}$ for the presheaf $\mathcal{D}_{\mathcal{R}\mathcal{E}}$. This can be seen as a locally agreeing knowledgebase of the valuation algebra of \mathcal{R}-distributions. We say that e is non-contextual if there exists a global \mathcal{R}-distribution $g \in \mathcal{D}_{\mathcal{R}\mathcal{E}}(X)$ such that $g|_C = e_C$, for all $C \in \mathcal{M}$. Therefore, contextuality simply arises as an instance of a locally agreeing knowledgebase that disagrees globally. This is a very general concept, which has meaningful realisations in many fields captured by the valuation algebraic framework.
Contextuality and disagreement

- Recall that an empirical model on a scenario $\langle X, \mathcal{M}, (O_m)_{m \in X} \rangle$ is a compatible family $e = \{e_C\}_{C \in \mathcal{M}}$ for the presheaf $\mathcal{D}_{R\mathcal{E}}$.
- This can be seen as a locally agreeing knowledgebase of the valuation algebra of R-distributions.
Recall that an empirical model on a scenario $\langle X, \mathcal{M}, (O_m)_{m \in X} \rangle$ is a compatible family $e = \{e_C\}_{C \in \mathcal{M}}$ for the presheaf $\mathcal{D}_R\mathcal{E}$.

This can be seen as a locally agreeing knowledgebase of the valuation algebra of R-distributions.

We say that e is non-contextual if there exists a global R-distribution $g \in \mathcal{D}_R\mathcal{E}(X)$ such that

$$g|_C = e_C,$$

for all $C \in \mathcal{M}$.
Contextuality and disagreement

- Recall that an **empirical model** on a scenario \(\langle X, \mathcal{M}, (O_m)_{m \in X}\rangle\) is a **compatible family** \(e = \{e_C\}_{C \in \mathcal{M}}\) for the presheaf \(\mathcal{D}_{RE}\).

- This can be seen as a **locally agreeing knowledgebase** of the valuation algebra of \(R\)-distributions.

- We say that \(e\) is **non-contextual** if there exists a **global** \(R\)-distribution \(g \in \mathcal{D}_{RE}(X)\) such that
 \[
g|_C = e_C,
 \]
 for all \(C \in \mathcal{M}\).

- Therefore, contextuality simply arises as an instance of a **locally agreeing knowledgebase that disagrees globally**.
Contextuality and disagreement

- Recall that an empirical model on a scenario \(\langle X, \mathcal{M}, (O_m)_{m \in X} \rangle \) is a compatible family \(e = \{ e_C \}_{C \in \mathcal{M}} \) for the presheaf \(\mathcal{D}_R \mathcal{E} \).
- This can be seen as a locally agreeing knowledgebase of the valuation algebra of \(R \)-distributions.
- We say that \(e \) is non-contextual if there exists a global \(R \)-distribution \(g \in \mathcal{D}_R \mathcal{E}(X) \) such that
 \[
 g |_C = e_C,
 \]
 for all \(C \in \mathcal{M} \).
- Therefore, contextuality simply arises as an instance of a locally agreeing knowledgebase that disagrees globally.
- This is a very general concept, which has meaningful realisations in many fields captured by the valuation algebraic framework.
Local agreement vs global disagreement: Examples

A first example in relational databases, taken from real sources. Breast cancer guidelines from 3 different medical associations:

- Screening with mammography annually, clinical breast exam annually or biannually
- Women aged 50 to 54 years should get mammograms. Women aged 55 years and older should switch to clinical breast exams
- Women aged 50 to 54 years should undergo an exam every year. Women aged 55 years and older should be examined every 2 years

<table>
<thead>
<tr>
<th>Exam Frequency</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>CBE</td>
</tr>
<tr>
<td>Y</td>
<td>2Y</td>
</tr>
<tr>
<td>54+</td>
<td>54−</td>
</tr>
</tbody>
</table>

Samson Abramsky & Giovanni Carù (Oxford CS)
Local agreement vs global disagreement: Examples

- A first example in relational databases, taken from real sources. Breast cancer guidelines from 3 different medical associations:
 - Screening with mammography annually, clinical breast exam annually or biannually
 - Women aged 50 to 54 years should get mammograms. Women aged 55 years and older should switch to clinical breast exams
 - Women aged 50 to 54 years should undergo an exam every year. Women aged 55 years and older should be examined every 2 years.
Local agreement vs global disagreement: Examples

- A first example in relational databases, taken from real sources. Breast cancer guidelines from 3 different medical associations:
 - Screening with mammography annually, clinical breast exam annually or biannually
 - Women aged 50 to 54 years should get mammograms. Women aged 55 years and older should switch to clinical breast exams
 - Women aged 50 to 54 years should undergo an exam every year. Women aged 55 years and older should be examined every 2 years.
Local agreement vs global disagreement: Examples

For an example in CSPs, consider a graph colorability problem:

Consider the problem of coloring a political map with 3 colors. We focus on the geographical region surrounding Malawi:

Zambia
Mozambique
Tanzania
Malawi
Zimbabwe

One can easily show that it is impossible to color the map using only 3 colors. This can be seen as an instance of local agreement (LA) vs global disagreement (GD) both for the algebra of CSP-information sets, and the algebra of CSP-formulae.
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**:
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**:
- Consider the problem of coloring a political map with 3 colors.
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**:
- Consider the problem of coloring a political map with 3 colors. We focus on the geographical region surrounding Malawi:
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**:
- Consider the problem of coloring a political map with 3 colors. We focus on the geographical region surrounding Malawi:
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**: Consider the problem of coloring a political map with 3 colors. We focus on the geographical region surrounding Malawi:

- One can easily show that it is impossible to color the map using only 3 colors.
Local agreement vs global disagreement: Examples

- For an example in CSPs, consider a **graph colorability problem**:
- Consider the problem of coloring a political map with 3 colors. We focus on the geographical region surrounding Malawi:

One can easily show that it is impossible to color the map using only 3 colors.

This can be seen as an instance of local agreement (LA) vs global disagreement (GD) both for the algebra of CSP-information sets, and the algebra of CSP-formulae.
Local agreement vs global disagreement: Examples

For an example from logic, consider the liar's cycle S_1:

S_2: S_3 is true,

S_3: S_4 is true,

\ldots

S_{n-1}: S_n is true,

S_n: S_1 is false.

Also in this case, this is an instance of LA vs GD both for the algebra of propositional information sets, and the algebra of propositional formulae.
Local agreement vs global disagreement: Examples

- For an example from logic, consider the liar’s cycle

 S_1: S_2 is true,
 S_2: S_3 is true,
 $...$
 S_{n-1}: S_n is true,
 S_n: S_1 is false.
Local agreement vs global disagreement: Examples

- For an example from logic, consider the liar’s cycle

\[
S_1 : \text{S}_2 \text{ is true,} \\
S_2 : \text{S}_3 \text{ is true,} \\
\vdots \\
S_{n-1} : \text{S}_n \text{ is true,} \\
S_n : \text{S}_1 \text{ is false.}
\]
Local agreement vs global disagreement: Examples

- For an example from **logic**, consider the **liar’s cycle**

 \[
 S_1 : S_2 \text{ is true}, \\
 S_2 : S_3 \text{ is true}, \\
 \vdots \\
 S_{n-1} : S_n \text{ is true}, \\
 S_n : S_1 \text{ is false}.
 \]

- Also in this case, this is an instance of **LA vs GD** both for the algebra of propositional information sets, and the algebra of propositional formulae.
Local agreement vs global disagreement: Examples

Finally, an example concerning linear equations. Consider the following system of equations in \mathbb{Z}_2:

\begin{align*}
e_1 & : (x_1 \oplus x_2 \oplus x_3) = 1 \\
e_2 & : (x_1 \oplus y_2 \oplus y_3) = 0 \\
e_3 & : (y_1 \oplus x_2 \oplus y_3) = 0 \\
e_4 & : (y_1 \oplus y_2 \oplus x_3) = 0
\end{align*}

The equations are locally consistent (i.e. every pair of equations admit solutions for their common variables), yet if we sum them all we obtain $0 = 1$, which means that there is no global solution, i.e. the knowledgebase $\{e_1, e_2, e_3, e_4\}$ disagrees globally.

These equations are exactly those used by Mermin to prove strong contextuality of the GHZ model.
Finally, an example concerning linear equations.

Consider the following system of equations in \mathbb{Z}_2:

- e_1: $x_1 \oplus x_2 \oplus x_3 = 1$
- e_2: $x_1 \oplus y_2 \oplus y_3 = 0$
- e_3: $y_1 \oplus x_2 \oplus y_3 = 0$
- e_4: $y_1 \oplus y_2 \oplus x_3 = 0$

The equations are locally consistent (i.e. every pair of equations admit solutions for their common variables), yet if we sum them all we obtain $0 = 1$, which means that there is no global solution, i.e. the knowledgebase $\{e_1, e_2, e_3, e_4\}$ disagrees globally.

These equations are exactly those used by Mermin to prove strong contextuality of the GHZ model.
Local agreement vs global disagreement: Examples

Finally, an example concerning linear equations. Consider the following system of equations in \mathbb{Z}_2:
Finally, an example concerning linear equations. Consider the following system of equations in \mathbb{Z}_2:

\begin{align*}
e_1 & := (x_1 \oplus x_2 \oplus x_3 = 1) \\
e_2 & := (x_1 \oplus y_2 \oplus y_3 = 0) \\
e_3 & := (y_1 \oplus x_2 \oplus y_3 = 0) \\
e_4 & := (y_1 \oplus y_2 \oplus x_3 = 0)
\end{align*}
Local agreement vs global disagreement: Examples

- Finally, an example concerning linear equations. Consider the following system of equations in \mathbb{Z}_2:

 $e_1 := (x_1 \oplus x_2 \oplus x_3 = 1)$
 $e_2 := (x_1 \oplus y_2 \oplus y_3 = 0)$
 $e_3 := (y_1 \oplus x_2 \oplus y_3 = 0)$
 $e_4 := (y_1 \oplus y_2 \oplus x_3 = 0)$

- The equations are locally consistent (i.e. every pair of equations admit solutions for their common variables), yet if we sum them all we obtain $0 = 1$, which means that there is no global solution, i.e. the knowledgebase $\{e_{1,2,3,4}\}$ disagrees globally.
Local agreement vs global disagreement: Examples

Finally, an example concerning linear equations. Consider the following system of equations in \mathbb{Z}_2:

\begin{align*}
e_1 &:= (x_1 \oplus x_2 \oplus x_3 = 1) \\
e_2 &:= (x_1 \oplus y_2 \oplus y_3 = 0) \\
e_3 &:= (y_1 \oplus x_2 \oplus y_3 = 0) \\
e_4 &:= (y_1 \oplus y_2 \oplus x_3 = 0)
\end{align*}

The equations are locally consistent (i.e. every pair of equations admit solutions for their common variables), yet if we sum them all we obtain $0 = 1$, which means that there is no global solution, i.e. the knowledgebase $\{e_1, e_2, e_3, e_4\}$ disagrees globally.

These equations are exactly those used by Mermin to prove strong contextuality of the GHZ model.
A (new!) dictionary

<table>
<thead>
<tr>
<th>Valuation algebras</th>
<th>Empirical models</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>measurements</td>
</tr>
<tr>
<td>frame Ω_x</td>
<td>outcome set O_x</td>
</tr>
<tr>
<td>knowledgebase domains</td>
<td>measurement scenario</td>
</tr>
<tr>
<td>domain of valuation</td>
<td>context</td>
</tr>
<tr>
<td>tuple</td>
<td>event</td>
</tr>
<tr>
<td>local agreement</td>
<td>no-signalling</td>
</tr>
<tr>
<td>locally-agreeing knowledgebase</td>
<td>empirical model</td>
</tr>
<tr>
<td>projection</td>
<td>restriction (marginalisation)</td>
</tr>
<tr>
<td>combination</td>
<td>glueing</td>
</tr>
<tr>
<td>truth valuation</td>
<td>global section</td>
</tr>
<tr>
<td>disagreement</td>
<td>contextuality</td>
</tr>
</tbody>
</table>

Samson Abramsky & Giovanni Carù (Oxford CS) | Contextuality and valuation algebras | Winer Memorial Lectures 2018
Translating results...

The valuation algebraic definition of disagreement allows us to translate definitions, methods, results and algorithms from one field to the other.

Example

A key result in contextuality is the characterisation of all scenarios that do not admit contextual behavior. The following result was proven by Barbosa, via an adaptation of Vorob'ev's theorem:

\[\text{Every empirical model on a scenario } \langle X, M, O \rangle \text{ is non-contextual iff the simplicial complex described by } M \text{ is acyclic.} \]

This theorem can be generalised to the level of valuation algebras:

Theorem

Every locally agreeing knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) on a set of domains \(D = \{ d_1, \ldots, d_n \} \) agrees globally iff the simplicial complex described by \(D \) is acyclic.
Translating results...

- The valuation algebraic definition of disagreement allows us to **translate** definitions, methods, results and algorithms from one field to the other.

Example
Translating results...

- The valuation algebraic definition of disagreement allows us to translate definitions, methods, results and algorithms from one field to the other.

Example

- A key result in contextuality is the characterisation of all scenarios that do not admit contextual behavior. The following result was proven by Barbosa, via an adaptation of Vorob’ev’s theorem:
Translating results...

- The valuation algebraic definition of disagreement allows us to translate definitions, methods, results and algorithms from one field to the other.

Example

- A key result in contextuality is the characterisation of all scenarios that do not admit contextual behavior. The following result was proven by Barbosa, via an adaptation of Vorob’ev’s theorem:

> Every empirical model on a scenario \(\langle X, \mathcal{M}, O \rangle \) is non-contextual iff the simplicial complex described by \(\mathcal{M} \) is acyclic.
Translating results...

- The valuation algebraic definition of disagreement allows us to translate definitions, methods, results and algorithms from one field to the other.

Example

- A key result in contextuality is the characterisation of all scenarios that do not admit contextual behavior. The following result was proven by Barbosa, via an adaptation of Vorob’ev’s theorem:

 Every empirical model on a scenario $\langle X, M, O \rangle$ is non-contextual iff the simplicial complex described by M is acyclic.

- This theorem can be generalised to the level of valuation algebras:

Theorem

Every locally agreeing knowledgebase $\{\phi_1, \ldots, \phi_n\}$ on a set of domains $D := \{d_1, \ldots, d_n\}$ agrees globally iff the simplicial complex described by D is acyclic.
Theorem

Every locally agreeing knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) on a set of domains \(\mathcal{D} := \{d_1, \ldots, d_n\} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.
Translating results...

Theorem

Every locally agreeing knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) on a set of domains \(\mathcal{D} := \{ d_1, \ldots, d_n \} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
Translating results...

Theorem

Every locally agreeing knowledgebase \(\{\phi_1, \ldots, \phi_n\} \) on a set of domains \(\mathcal{D} := \{d_1, \ldots, d_n\} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
 - **Probability distributions**: Vorob’ev’s theorem.
Translating results...

Theorem

Every locally agreeing knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) on a set of domains \(\mathcal{D} := \{ d_1, \ldots, d_n \} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
 - **Probability distributions**: Vorob’ev’s theorem.
 - **Relational databases**: Every database instance on a database schema admits a global relation iff the database schema is acyclic.
Translating results...

Theorem

Every locally agreeing knowledgebase \(\{\phi_1, \ldots, \phi_n\} \) on a set of domains \(\mathcal{D} := \{d_1, \ldots, d_n\} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
 - **Probability distributions**: Vorob’ev’s theorem.
 - **Relational databases**: Every database instance on a database schema admits a global relation iff the database schema is acyclic.
 - **CSPs – graph colorability**: Every tree is \(k \)-colorable, for any \(k \geq 2 \).
Theorem

Every locally agreeing knowledgebase \(\{\phi_1, \ldots, \phi_n\} \) on a set of domains \(\mathcal{D} := \{d_1, \ldots, d_n\} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
 - **Probability distributions:** Vorob’ev’s theorem.
 - **Relational databases:** *Every database instance on a database schema admits a global relation iff the database schema is acyclic*.
 - **CSPs – graph colorability:** *Every tree is \(k \)-colorable, for any \(k \geq 2 \).*
 - ...
Translating results...

Theorem

Every locally agreeing knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) on a set of domains \(\mathcal{D} := \{ d_1, \ldots, d_n \} \) agrees globally iff the simplicial complex described by \(\mathcal{D} \) is acyclic.

- This theorem then specialises to results for each specific valuation algebra:
 - **Probability distributions**: Vorob’ev’s theorem.
 - **Relational databases**: Every database instance on a database schema admits a global relation iff the database schema is acyclic.
 - **CSPs – graph colorability**: Every tree is \(k \)-colorable, for any \(k \geq 2 \).
 - ...

- More generally speaking, we would like to apply the wide range of methods and algorithms of the valuation algebraic framework to study contextuality.
Inference problems

The classic problem of extracting relevant knowledge about a given query out of a certain set of information sources can be effectively modelled in the valuation algebraic framework:

Definition
Given a valuation algebra Φ, a knowledgebase $\{\phi_1, \ldots, \phi_n\} \subseteq \Phi$, and a set of domains $x = \{x_1, \ldots, x_k\}$, with $x_i \subseteq d(\phi_1 \otimes \cdots \otimes \phi_n)$, we call an inference problem the task of computing $(\phi_1 \otimes \cdots \otimes \phi_n) \downarrow x_i$.

The valuation $\phi = (\phi_1 \otimes \cdots \otimes \phi_n)$ is called joint valuation or objective function, while each domain x_i is called a query.

There is a vast class of algorithms designed to solve inference problems efficiently.

Can we turn the problem of detecting disagreement in a inference problem?
Inference problems

- The classic problem of extracting relevant knowledge about a given query out of a certain set of information sources can be effectively modelled in the valuation algebraic framework:

Definition

Given a valuation algebra Φ, a knowledgebase $\{\phi_1, \ldots, \phi_n\} \subseteq \Phi$, and a set of domains $x = \{x_1, \ldots, x_k\}$, with $x_i \subseteq d(\phi_1 \otimes \cdots \otimes \phi_n)$, we call an inference problem the task of computing $(\phi_1 \otimes \cdots \otimes \phi_n) \downarrow x_i$.

The valuation $\phi = (\phi_1 \otimes \cdots \otimes \phi_n)$ is called the joint valuation or objective function, while each domain x_i is called a query.

There is a vast class of algorithms designed to solve inference problems efficiently.
Inference problems

- The classic problem of extracting relevant knowledge about a given query out of a certain set of information sources can be effectively modelled in the valuation algebraic framework:

Definition

Given a valuation algebra Φ, a knowledgebase $\{\phi_1, \ldots, \phi_n\} \subseteq \Phi$, and a set of domains $x = \{x_1, \ldots, x_k\}$, with $x_i \subseteq d(\phi_1 \otimes \cdots \otimes \phi_n)$, we call an **inference problem** the task of computing

$$\downarrow_{x_i}(\phi_1 \otimes \cdots \otimes \phi_n).$$

The valuation $\phi = (\phi_1 \otimes \cdots \otimes \phi_n)$ is called **joint valuation** or **objective function**, while each domain x_i is called a **query**.
The classic problem of extracting relevant knowledge about a given query out of a certain set of information sources can be effectively modelled in the valuation algebraic framework:

Definition

Given a valuation algebra Φ, a knowledgebase $\{\phi_1, \ldots, \phi_n\} \subseteq \Phi$, and a set of domains $x = \{x_1, \ldots, x_k\}$, with $x_i \subseteq d(\phi_1 \otimes \cdots \otimes \phi_n)$, we call an **inference problem** the task of computing

$$(\phi_1 \otimes \cdots \otimes \phi_n)^{\downarrow x_i}.$$

The valuation $\phi = (\phi_1 \otimes \cdots \otimes \phi_n)$ is called **joint valuation** or **objective function**, while each domain x_i is called a **query**.

There is a vast class of **algorithms** designed to solve inference problems efficiently.
Inference problems

- The classic problem of extracting relevant knowledge about a given query out of a certain set of information sources can be effectively modelled in the valuation algebraic framework:

Definition

Given a valuation algebra Φ, a knowledgebase $\{\phi_1, \ldots, \phi_n\} \subseteq \Phi$, and a set of domains $x = \{x_1, \ldots, x_k\}$, with $x_i \subseteq d(\phi_1 \otimes \cdots \otimes \phi_n)$, we call an inference problem the task of computing

$$(\phi_1 \otimes \cdots \otimes \phi_n)^\downarrow x_i.$$

The valuation $\phi = (\phi_1 \otimes \cdots \otimes \phi_n)$ is called joint valuation or objective function, while each domain x_i is called a query.

- There is a vast class of algorithms designed to solve inference problems efficiently.
- Can we turn the problem of detecting disagreement in an inference problem?
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi$ for some $S \subseteq V$, one could ask whether it is possible to quantify the amount of information carried by ϕ and compare it to other valuations of Φ_S.

This idea is captured by the notion of ordered valuation algebras

Definition

Let Φ be a valuation algebra on V. We say that Φ is ordered if there exists a partial order \preceq on Φ such that:

(A10) Partial order: For all $\phi, \psi \in \Phi$, $\phi \preceq \psi$ implies $d(\phi) = d(\psi)$.

Moreover, for every $S \subseteq V$ and $\Psi \subseteq \Phi_S$, the infimum $\inf(\Psi)$ exists.

(A11) Null element: For all $S \subseteq V$, we have $\inf(\Phi_S) = z_S$.

(A12) Monotonicity of combination: For all $\phi_1, \phi_2, \psi_1, \psi_2 \in \Phi$ such that $\phi_1 \preceq \phi_2$ and $\psi_1 \preceq \psi_2$, we have $\phi_1 \otimes \psi_1 \preceq \phi_2 \otimes \psi_2$.

(A13) Monotonicity of projection: For all $\phi, \psi \in \Phi$, if $\phi \preceq \psi$ then $\phi \downarrow S \preceq \psi \downarrow S$ for all $S \subseteq d(\phi) = d(\psi)$.
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for some $S \subseteq V$, one could ask whether it is possible to quantify the amount of information carried by ϕ and compare it to other valuations of Φ_S.
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for some $S \subseteq V$, one could ask whether it is possible to **quantify** the amount of information carried by ϕ and compare it to other valuations of Φ_S. This idea is captured by the notion of **ordered valuation algebras**
Ordered valuation algebras

- Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for some $S \subseteq V$, one could ask whether it is possible to quantify the amount of information carried by ϕ and compare it to other valuations of Φ_S. This idea is captured by the notion of ordered valuation algebras.

Definition

Let Φ be a valuation algebra on V. We say that Φ is **ordered** if there exists a partial order \preceq on Φ such that:

1. **Partial order**: For all $\phi, \psi \in \Phi$, $\phi \preceq \psi$ implies $d(\phi) = d(\psi)$.
2. **Null element**: For all $S \subseteq V$, we have $\inf(\Phi_S) = z_S$.
3. **Monotonicity of combination**: For all $\phi_1, \phi_2, \psi_1, \psi_2 \in \Phi$ such that $\phi_1 \preceq \phi_2$ and $\psi_1 \preceq \psi_2$ we have $\phi_1 \otimes \psi_1 \preceq \phi_2 \otimes \psi_2$.
4. **Monotonicity of projection**: For all $\phi, \psi \in \Phi$, if $\phi \preceq \psi$ then $\phi \downarrow S \preceq \psi \downarrow S$ for all $S \subseteq d(\phi) = d(\psi)$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for
some $S \subseteq V$, one could ask whether it is possible to **quantify** the amount of
information carried by ϕ and compare it to other valuations of Φ_S. This idea is
captured by the notion of **ordered valuation algebras**

Definition

Let Φ be a valuation algebra on V. We say that Φ is **ordered** if there exists a **partial
order** \preceq on Φ such that:

(A10) **Partial order**: For all $\phi, \psi \in \Phi$, $\phi \preceq \psi$ implies $d(\phi) = d(\psi)$. Moreover, for
every $S \subseteq V$ and $\Psi \subseteq \Phi_S$, the infimum $\inf(\Psi)$ exists.
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for some $S \subseteq V$, one could ask whether it is possible to quantify the amount of information carried by ϕ and compare it to other valuations of Φ_S. This idea is captured by the notion of **ordered valuation algebras**

Definition

Let Φ be a valuation algebra on V. We say that Φ is **ordered** if there exists a **partial order** \preceq on Φ such that:

(A10) *Partial order:* For all $\phi, \psi \in \Phi$, $\phi \preceq \psi$ implies $d(\phi) = d(\psi)$. Moreover, for every $S \subseteq V$ and $\Psi \subseteq \Phi_S$, the infimum $\inf(\Psi)$ exists.

(A11) *Null element:* For all $S \subseteq V$, we have

$$\inf(\Phi_S) = z_S.$$
Ordered valuation algebras

Given a valuation algebra Φ on a set of variables V, and a valuation $\phi \in \Phi_S$ for some $S \subseteq V$, one could ask whether it is possible to quantify the amount of information carried by ϕ and compare it to other valuations of Φ_S. This idea is captured by the notion of ordered valuation algebras.

Definition

Let Φ be a valuation algebra on V. We say that Φ is ordered if there exists a partial order \preceq on Φ such that:

(A10) Partial order: For all $\phi, \psi \in \Phi$, $\phi \preceq \psi$ implies $d(\phi) = d(\psi)$. Moreover, for every $S \subseteq V$ and $\Psi \subseteq \Phi_S$, the infimum $\inf(\Psi)$ exists.

(A11) Null element: For all $S \subseteq V$, we have

$$\inf(\Phi_S) = z_S.$$

(A12) Monotonicity of combination: For all $\phi_1, \phi_2, \psi_1, \psi_2 \in \Phi$ such that $\phi_1 \preceq \phi_2$ and $\psi_1 \preceq \psi_2$ we have

$$\phi_1 \otimes \psi_1 \preceq \phi_2 \otimes \psi_2.$$
Ordered valuation algebras

Given a valuation algebra \(\Phi \) on a set of variables \(V \), and a valuation \(\phi \in \Phi_S \) for some \(S \subseteq V \), one could ask whether it is possible to quantify the amount of information carried by \(\phi \) and compare it to other valuations of \(\Phi_S \). This idea is captured by the notion of ordered valuation algebras.

Definition

Let \(\Phi \) be a valuation algebra on \(V \). We say that \(\Phi \) is **ordered** if there exists a partial order \(\preceq \) on \(\Phi \) such that:

(A10) **Partial order**: For all \(\phi, \psi \in \Phi \), \(\phi \preceq \psi \) implies \(d(\phi) = d(\psi) \). Moreover, for every \(S \subseteq V \) and \(\Psi \subseteq \Phi_S \), the infimum \(\inf(\Psi) \) exists.

(A11) **Null element**: For all \(S \subseteq V \), we have

\[
\inf(\Phi_S) = z_S.
\]

(A12) **Monotonicity of combination**: For all \(\phi_1, \phi_2, \psi_1, \psi_2 \in \Phi \) such that \(\phi_1 \preceq \phi_2 \) and \(\psi_1 \preceq \psi_2 \) we have

\[
\phi_1 \otimes \psi_1 \preceq \phi_2 \otimes \psi_2.
\]
Most valuations algebras have an order structure: relational databases, propositional information, algebra of sentences, any algebra related to general notions of language and models, etc. (not probability distributions!)

All of these algebras have a key common property. Their composition operation is described by the same categorical construction:

\[\Phi(S) \otimes \Phi(T) = \Phi(S \cup T) \]

Proposition

Let \(\Phi \) be an ordered algebra in the list above. The composition law \(\otimes: \Phi(S) \times \Phi(T) \to \Phi(S \cup T) \) is uniquely characterised as the right adjoint of \(\langle \rho_{S \cup T}, \rho_{S \cup T} \rangle \). In other words, it is the unique map such that

\[\text{id}_{\Phi(S \cup T)} \leq \otimes \circ \langle \rho_{S \cup T}, \rho_{S \cup T} \rangle, \langle \rho_{S \cup T}, \rho_{S \cup T} \rangle \circ \otimes \leq \text{id}_{\Phi(S) \times \Phi(T)}, \]

where \(\leq \) is the pointwise order inherited by the partial order \(\preceq \).
Most valuations algebras have an order structure: relational databases, propositional information, algebra of sentences, any algebra related to general notions of language and models, etc. (not probability distributions!)

Most valuations algebras have an order structure: relational databases, propositional information, algebra of sentences, any algebra related to general notions of language and models, etc. (not probability distributions!)

All of these algebras have a key common property.
Most valuations algebras have an order structure: relational databases, propositional information, algebra of sentences, any algebra related to general notions of language and models, etc. (not probability distributions!)

All of these algebras have a key common property. Their composition operation is described by the same categorical construction:
Most valuations algebras have an order structure: relational databases, propositional information, algebra of sentences, any algebra related to general notions of language and models, etc. (not probability distributions!)

All of these algebras have a key common property. Their composition operation is described by the same categorical construction:

\[\Phi(S) \xleftarrow{\pi_1} \Phi(S) \times \Phi(T) \xrightarrow{\pi_2} \Phi(T) \]

\[\rho^S_{S \cup T} \]

\[\rho^T_{S \cup T} \]

\[\Phi(S \cup T) \]

Proposition

Let \(\Phi \) be an ordered algebra in the list above. The composition law \(\otimes : \Phi(S) \times \Phi(T) \to \Phi(S \cup T) \) is uniquely characterised as the right adjoint of \(\langle \rho^S_{S \cup T}, \rho^T_{S \cup T} \rangle \). In other words, it is the unique map such that

\[\text{id}_{\Phi(S \cup T)} \leq \otimes \circ \langle \rho^S_{S \cup T}, \rho^T_{S \cup T} \rangle, \quad \langle \rho^S_{S \cup T}, \rho^T_{S \cup T} \rangle \circ \otimes \leq \text{id}_{\Phi(S) \times \Phi(T)}, \]

where \(\leq \) is the pointwise order inherited by the partial order \(\preceq \).
Disagreement as an inference problem

We call algebras with this structure lossy. They have the following key property:

Proposition

Let Φ be a lossy valuation algebra on a set of variables V. Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. Let $\gamma = \bigotimes_{i=1}^{n} \phi_i$.

Then ϕ_1, \ldots, ϕ_n agree globally if and only if $\gamma \downarrow_d (\phi_i) = \phi_i$. In this case, γ is the most informative of all the possible truth valuations.

In other words, a truth valuation can only be obtained by combining all of the valuations in a knowledgebase. Consequently, in order to determine whether a knowledgebase $\{\phi_1, \ldots, \phi_n\}$ disagrees globally, all we have to do is to solve the inference problem $(\phi_1 \otimes \cdots \otimes \phi_n) \downarrow_d (\phi_i)$ for all $1 \leq i \leq n$.
Disagreement as an inference problem

- We call algebras with this structure **lossy**. They have the following key property:

\[\text{Proposition} \]

Let \(\Phi \) be a lossy valuation algebra on a set of variables \(V \). Let \(K = \{ \phi_1, \ldots, \phi_n \} \subseteq \Phi \) be a knowledgebase. Let

\[\gamma = \bigotimes_{i=1}^{n} \phi_i. \]

(1)

Then \(\phi_1, \ldots, \phi_n \) agree globally if and only if \(\gamma \downarrow_d (\phi_i) = \phi_i \). In this case, \(\gamma \) is the most informative of all the possible truth valuations.

In other words, a truth valuation can only be obtained by combining all of the valuations in a knowledgebase. Consequently, in order to determine whether a knowledgebase \(\{ \phi_1, \ldots, \phi_n \} \) disagrees globally, all we have to do is to solve the inference problem \((\phi_1 \otimes \cdots \otimes \phi_n) \downarrow_d (\phi_i) \) for all \(1 \leq i \leq n \).
Disagreement as an inference problem

- We call algebras with this structure **lossy**. They have the following key property:

Proposition

Let Φ be a lossy valuation algebra on a set of variables V. Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. Let

$$\gamma = \bigotimes_{i=1}^{n} \phi_i.$$ \hspace{1cm} (1)

Then ϕ_1, \ldots, ϕ_n agree globally if and only if $\gamma \downarrow d(\phi_i) = \phi_i$. In this case, γ is the most informative of all the possible truth valuations.

In other words, a truth valuation can only be obtained by combining all of the valuations in a knowledgebase.

Consequently, in order to determine whether a knowledgebase $\{\phi_1, \ldots, \phi_n\}$ disagrees globally, all we have to do is to solve the inference problem $(\phi_1 \otimes \cdots \otimes \phi_n) \downarrow d(\phi_i)$ for all $1 \leq i \leq n$.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Disagreement as an inference problem

- We call algebras with this structure **lossy**. They have the following key property:

Proposition

Let Φ be a lossy valuation algebra on a set of variables V. Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. Let

$$
\gamma = \bigotimes_{i=1}^{n} \phi_i.
$$

(1)

Then ϕ_1, \ldots, ϕ_n agree globally if and only if $\gamma \downarrow d(\phi_i) = \phi_i$. In this case, γ is the most informative of all the possible truth valuations.

- In other words, a truth valuation can only be obtained by combining all of the valuations in a knowledgebase.
Disagreement as an inference problem

- We call algebras with this structure **lossy**. They have the following key property:

Proposition

Let Φ be a lossy valuation algebra on a set of variables V. Let $K = \{\phi_1, \ldots, \phi_n\} \subseteq \Phi$ be a knowledgebase. Let

$$\gamma = \bigotimes_{i=1}^{n} \phi_i.$$ \hfill (1)

Then ϕ_1, \ldots, ϕ_n agree globally if and only if $\gamma \downarrow^{d(\phi_i)} = \phi_i$. In this case, γ is the most informative of all the possible truth valuations.

- In other words, a truth valuation can only be obtained by combining all of the valuations in a knowledgebase.
- Consequently, in order to determine whether a knowledgebase $\{\phi_1, \ldots, \phi_n\}$ disagrees globally, all we have to do is to solve the inference problem

$$\phi_1 \otimes \cdots \otimes \phi_n \downarrow^{d(\phi_i)}$$

for all $1 \leq i \leq n$.

Strong disagreement

Let Φ be a lossy information algebra. By the previous proposition, we know that $\gamma = \bigotimes_{i=1}^{n} \phi_i$ is the most informative of all the possible candidate truth valuations. Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree. In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e. the null element of the information algebra.

Definition
We say that a knowledgebase $\{\phi_1, \ldots, \phi_n\}$, with $D = \bigcup_{i=1}^{n} d(\phi_i)$, disagrees strongly if $\gamma = z_D$.

Strong contextuality is an instance of strong disagreement, where the information algebra in question is the one of boolean distributions.

Samson Abramsky & Giovanni Carù (Oxford CS)
Contextuality and valuation algebras
Winer Memorial Lectures 2018
Strong disagreement

- Let Φ be a lossy information algebra.

By the previous proposition, we know that $\gamma = \bigotimes_{i=1}^{n} \phi_i$ is the most informative of all the possible candidate truth valuations. Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree. In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e., the null element of the information algebra.

Definition

We say that a knowledgebase $\{\phi_1, \ldots, \phi_n\}$, with $D = \bigcup_{i=1}^{n} d(\phi_i)$, disagrees strongly if $\gamma = z_D$.

Strong contextuality is an instance of strong disagreement, where the information algebra in question is the one of boolean distributions.
Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that

$$\gamma = \bigotimes_{i=1}^{n} \phi_i$$

is the most informative of all the possible candidate truth valuations.

Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree. In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e. the null element of the information algebra.

Definition

We say that a knowledgebase $\{\phi_1, \ldots, \phi_n\}$, with $D = \bigcup_{i=1}^{n} d(\phi_i)$, disagrees strongly if $\gamma = z_D$.

Strong contextuality is an instance of strong disagreement, where the information algebra in question is the one of boolean distributions.
Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that

$$
\gamma = \bigotimes_{i=1}^{n} \phi_i
$$

is the most informative of all the possible candidate truth valuations.
- Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree.
Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that

$$\gamma = \bigotimes_{i=1}^{n} \phi_i$$

is the most informative of all the possible candidate truth valuations.
- Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree.
- In extreme cases, it can happen that the information sources disagree completely.
Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that
 \[\gamma = \bigotimes_{i=1}^{n} \phi_i \]
 is the most informative of all the possible candidate truth valuations.
- Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree.
- In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e. the null element of the information algebra.
Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that
 \[\gamma = \bigotimes_{i=1}^{n} \phi_i \]
 is the most informative of all the possible candidate truth valuations.
- Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree.
- In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e. the null element of the information algebra.

Definition

We say that a knowledgebase $\{\phi_1, \ldots, \phi_n\}$, with $D := \bigcup_{i=1}^{n} d(\phi_i)$, **disagrees strongly** if $\gamma = z_D$.

Strong disagreement

- Let Φ be a lossy information algebra.
- By the previous proposition, we know that

$$\gamma = \bigotimes_{i=1}^{n} \phi_i$$

is the most informative of all the possible candidate truth valuations.
- Even when the knowledgebase disagrees, γ represents the portion of the information on which the sources do agree.
- In extreme cases, it can happen that the information sources disagree completely. In this case, the truth valuation is the least informative valuation, i.e. the null element of the information algebra.

Definition

We say that a knowledgebase $\{\phi_1, \ldots, \phi_n\}$, with $D := \bigcup_{i=1}^{n} d(\phi_i)$, **disagrees strongly** if $\gamma = z_D$.

- **Strong contextuality** is an instance of strong disagreement, where the information algebra in question is the one of boolean distributions.
Algorithms:

The valuation algebraic framework provides a wide range of algorithms to solve inference problems. In particular, the paradigm of local computation has proved particularly useful to efficiently solve single query inference problems:

▶ Fusion algorithm
▶ Bucket elimination algorithm
▶ Collect algorithm
...
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,
- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,
- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
 - Fusion algorithm
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,

- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
 - Fusion algorithm
 - Bucket elimination algorithm
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,
- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
 - Fusion algorithm
 - Bucket elimination algorithm
 - Collect algorithm
 - ...

One can use these efficient algorithms to detect contextuality in measurement scenarios. In particular, faster algorithms for non-locality detection can be implemented in specific scenarios.
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,
- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
 - Fusion algorithm
 - Bucket elimination algorithm
 - Collect algorithm
 - ...
- One can use these efficient algorithm to detect contextuality in measurement scenarios.
Algorithms:

- The valuation algebraic framework provides a wide range of algorithms to solve inference problems,

- In particular, the paradigm of **local computation** has proved particularly useful to efficiently solve single query inference problems:
 - Fusion algorithm
 - Bucket elimination algorithm
 - Collect algorithm
 - ...

- One can use these efficient algorithm to detect contextuality in measurement scenarios.

- In particular, faster algorithms for non-locality detection can be implemented in specific scenarios.