Introduction to the sheaf-theoretic approach to contextuality

Samson Abramsky

Department of Computer Science, University of Oxford
Why sheaves?

Sounds intimidating – it isn’t!

Connects to beautiful and powerful mathematical ideas

One of now several approaches which develop a

general theory of

contextuality, rather than a collection of examples:

▶ Spekkens,
▶ Contextuality by Default (Dzhakfarov and Kujala),
▶ graph-theoretic (Cabello, Severini, Winter),
▶ hypergraphs (Acin, Fritz, Leverrier, Sainz).

See recent exposition of some of this by Marcelo Terra Cunha and Barbara

Comparison with other approaches, e.g. the CSW graph-theoretic approach:

both have useful features, the “sheaf” approach exposes some additional

mathematical structure, which plays a crucial role in gaining a wider

perspective on contextuality

Samson Abramsky (Department of Computer Science, University of Oxford)
Why sheaves?

- Sounds intimidating – it isn’t!
Why sheaves?

- Sounds intimidating – it isn’t!
- Connects to beautiful and powerful mathematical ideas
Why sheaves?

- Sounds intimidating – it isn’t!
- Connects to beautiful and powerful mathematical ideas
- One of now several approaches which develop a general theory of contextuality, rather than a collection of examples:
 - Spekkens,
 - Contextuality by Default (Dzhakfarov and Kujala),
 - graph-theoretic (Cabello, Severini, Winter),
 - hypergraphs (Acin, Fritz, Leverrier, Sainz).
Why sheaves?

- Sounds intimidating – it isn’t!

- Connects to beautiful and powerful mathematical ideas

- One of now several approaches which develop a general theory of contextuality, rather than a collection of examples:
 - Spekkens,
 - Contextuality by Default (Dzhakfarov and Kujala),
 - graph-theoretic (Cabello, Severini, Winter),
 - hypergraphs (Acin, Fritz, Leverrier, Sainz).

- See recent exposition of some of this by Marcelo Terra Cunha and Barbara Amaral
Why sheaves?

- Sounds intimidating – it isn’t!
- Connects to beautiful and powerful mathematical ideas
- One of now several approaches which develop a general theory of contextuality, rather than a collection of examples:
 - Spekkens,
 - Contextuality by Default (Dzhakfarov and Kujala),
 - graph-theoretic (Cabello, Severini, Winter),
 - hypergraphs (Acin, Fritz, Leverrier, Sainz).
- See recent exposition of some of this by Marcelo Terra Cunha and Barbara Amaral
- Comparison with other approaches, e.g. the CSW graph-theoretic approach: both have useful features, the “sheaf” approach exposes some additional mathematical structure, which plays a crucial role in gaining a wider perspective on contextuality
What is Contextuality?

What, then, is the essence of contextuality? In broad terms, we propose to describe it as follows:

Contextuality arises where we have a family of data which is

locally consistent, but globally inconsistent
Contextuality Analogy: Local Consistency
Contextuality Analogy: Local Consistency
Contextuality Analogy: Global Inconsistency
Empirical Data
Empirical Data

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>((a, b'))</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>((a', b))</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
</tr>
<tr>
<td>((a', b'))</td>
<td>(\frac{1}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{8})</td>
</tr>
</tbody>
</table>

\[o_A \in \{0, 1\}\]

\[m_A \in \{a, a'\}\]

\[o_B \in \{0, 1\}\]

\[m_B \in \{b, b'\}\]
Formalizing Contextuality: Measurement scenarios

These are types in logical/CS terms. Types of experimental set-up. A scenario is \((X, M, O)\), where \(X\) is a set of variables or measurement labels. \(M\) is a family of subsets of \(X\) – the contexts, or compatible subsets. \(O\) is a set of outcomes or values for the variables. Can be refined to \(O_x, x \in X\).

Two variants of \(M\), which is a hypergraph: either the maximal contexts (no inclusions), or closure under subsets. In the latter case, we have an abstract simplicial complex.
Formalizing Contextuality: Measurement scenarios

These are **types** in logical/CS terms. Types of experimental set-up.
Formalizing Contextuality: Measurement scenarios

These are **types** in logical/CS terms. Types of experimental set-up.

A scenario is \((X, \mathcal{M}, O)\), where
Formalizing Contextuality: Measurement scenarios

These are **types** in logical/CS terms. Types of experimental set-up.

A scenario is \((X, M, O)\), where

- \(X\) is a set of **variables** or **measurement labels**
Formalizing Contextuality: Measurement scenarios

These are types in logical/CS terms. Types of experimental set-up.

A scenario is \((X, M, O)\), where

- \(X\) is a set of **variables** or **measurement labels**
- \(M\) is a family of subsets of \(X\) – the **contexts**, or compatible subsets
Formalizing Contextuality: Measurement scenarios

These are types in logical/CS terms. Types of experimental set-up.

A scenario is (X, \mathcal{M}, O), where

- X is a set of variables or measurement labels
- \mathcal{M} is a family of subsets of X – the contexts, or compatible subsets
- O is a set of outcomes or values for the variables. Can be refined to O_x, $x \in X$.

Two variants of \mathcal{M}, which is a hypergraph: either the maximal contexts (no inclusions), or closure under subsets.

In the latter case, we have an abstract simplicial complex.
Formalizing Contextuality: Measurement scenarios

These are types in logical/CS terms. Types of experimental set-up.

A scenario is \((X, \mathcal{M}, O)\), where

- \(X\) is a set of variables or measurement labels
- \(\mathcal{M}\) is a family of subsets of \(X\) – the contexts, or compatible subsets
- \(O\) is a set of outcomes or values for the variables. Can be refined to \(O_x, x \in X\).

Two variants of \(\mathcal{M}\), which is a hypergraph: either the maximal contexts (no inclusions), or closure under subsets.
Formalizing Contextuality: Measurement scenarios

These are **types** in logical/CS terms. Types of experimental set-up.

A scenario is \((X, \mathcal{M}, O)\), where

- **X** is a set of **variables** or **measurement labels**
- **\(\mathcal{M}\)** is a family of subsets of **X** – the **contexts**, or compatible subsets
- **O** is a set of **outcomes** or values for the variables. Can be refined to **\(O_x\)**, \(x \in X\).

Two variants of **\(\mathcal{M}\)**, which is a hypergraph: either the maximal contexts (no inclusions), or closure under subsets.

In the latter case, we have an **abstract simplicial complex**.
Example

In this table, the set of variables is $X = \{ a, a', b, b' \}$. The measurement contexts are:

- $\{ a_1, b_1 \}$
- $\{ a_2, b_1 \}$
- $\{ a_1, b_2 \}$
- $\{ a_2, b_2 \}$

The outcomes are $O = \{ 0, 1 \}$.
Example

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

In this table, the set of variables is $X = \{a, a', b, b'\}$. The measurement contexts are: $\{\{a_1, b_1\}, \{a_2, b_1\}, \{a_1, b_2\}, \{a_2, b_2\}\}$. The outcomes are $O = \{0, 1\}$.

Samson Abramsky (Department of Computer Science, University of Oxford)
Example

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

In this table, the set of variables is \(X = \{a, a', b, b'\} \).
Example

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

In this table, the set of variables is $X = \{a, a', b, b'\}$.

The measurement contexts are:

$$\{\{a_1, b_1\}, \{a_2, b_1\}, \{a_1, b_2\}, \{a_2, b_2\}\}$$
Example

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b)</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>(a, b')</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b)</td>
<td>3/8</td>
<td>1/8</td>
<td>1/8</td>
<td>3/8</td>
</tr>
<tr>
<td>(a', b')</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

In this table, the set of variables is $X = \{ a, a', b, b' \}$.

The measurement contexts are:

\[
\{ \{a_1, b_1\}, \ {a_2, b_1\}, \ {a_1, b_2\}, \ {a_2, b_2\} \}
\]

The outcomes are

\[O = \{0, 1\} \]
The 18-vector Kochen-Specker construction (Cabello et al)
The 18-vector Kochen-Specker construction (Cabello et al)

This uses
The 18-vector Kochen-Specker construction (Cabello et al)

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
The 18-vector Kochen-Specker construction (Cabello et al)

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
- A measurement cover $\mathcal{U} = \{U_1, \ldots, U_9\}$, where the columns U_i are the sets in the cover:
The 18-vector Kochen-Specker construction (Cabello et al)

This uses

- A set X of 18 variables, \{A, \ldots, O\}
- A measurement cover $\mathcal{U} = \{U_1, \ldots, U_9\}$, where the columns U_i are the sets in the cover:

\[
\begin{array}{cccccccc}
U_1 & U_2 & U_3 & U_4 & U_5 & U_6 & U_7 & U_8 & U_9 \\
A & A & H & H & B & I & P & P & Q \\
B & E & I & K & E & K & Q & R & R \\
C & F & C & G & M & N & D & F & M \\
D & G & J & L & N & O & J & L & O \\
\end{array}
\]
The 18-vector Kochen-Specker construction (Cabello et al)

This uses

- A set X of 18 variables, $\{A, \ldots, O\}$
- A measurement cover $\mathcal{U} = \{U_1, \ldots, U_9\}$, where the columns U_i are the sets in the cover:

<table>
<thead>
<tr>
<th>U_1</th>
<th>U_2</th>
<th>U_3</th>
<th>U_4</th>
<th>U_5</th>
<th>U_6</th>
<th>U_7</th>
<th>U_8</th>
<th>U_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>I</td>
<td>P</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>I</td>
<td>K</td>
<td>E</td>
<td>K</td>
<td>Q</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>C</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>D</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>J</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>J</td>
<td>L</td>
<td>O</td>
</tr>
</tbody>
</table>

The original K-S construction used 117 variables!
Basic events are local sections

A basic event is to measure all the variables in a context $\mathcal{C} \in M$, and observe the outcomes. This is represented by a function $s: \mathcal{C} \to \mathcal{O}$, i.e. $s \in \mathcal{O}^\mathcal{C}$, or more generally $s \in \prod_{x \in \mathcal{C}} \mathcal{O}_x$. Example: if $\mathcal{C} = \{a, b\}$, $\mathcal{O} = \{0, 1\}$, such an outcome might be $s = \{a \mapsto 0, b \mapsto 1\}$. This is a local section, since it is defined only on \mathcal{C}, not on the whole of X!

Basic operation of restriction: if $\mathcal{C} \subseteq \mathcal{C}'$, $s \in \mathcal{O}_{\mathcal{C}'}$, then $s|_{\mathcal{C}} \in \mathcal{O}_{\mathcal{C}}$. E.g. $s|_{\{a\}} = \{a \mapsto 0\}$.

Samson Abramsky (Department of Computer Science, University of Oxford)
Basic events are local sections

A basic event is to measure all the variables in a context $C \in \mathcal{M}$, and observe the outcomes.
Basic events are local sections

A basic event is to measure all the variables in a context $C \in \mathcal{M}$, and observe the outcomes.

This is represented by a function $s : C \to O$, i.e. $s \in O^C$, or more generally $s \in \prod_{x \in C} O_x$.

Example: if $C = \{a, b\}$, $O = \{0, 1\}$, such an outcome might be $s = \{a \mapsto 0, b \mapsto 1\}$. This is a local section, since it is defined only on C, not on the whole of X!

Basic operation of restriction: if $C \subseteq C'$, $s \in O^{C'}$, then $s \mid_C \in O^C$.

E.g. $s \mid_{\{a\}} = \{a \mapsto 0\}$.

Samson Abramsky (Department of Computer Science, University of Oxford)
Basic events are local sections

A basic event is to measure all the variables in a context $C \in \mathcal{M}$, and observe the outcomes.

This is represented by a function $s : C \rightarrow O$, i.e. $s \in O^C$, or more generally $s \in \prod_{x \in C} O_x$.

Example: if $C = \{a, b\}$, $O = \{0, 1\}$, such an outcome might be

$$s = \{a \mapsto 0, b \mapsto 1\}$$
Basic events are local sections

A basic event is to measure all the variables in a context $C \in \mathcal{M}$, and observe the outcomes.

This is represented by a function $s : C \to O$, i.e. $s \in O^C$, or more generally $s \in \prod_{x \in C} O_x$.

Example: if $C = \{a, b\}$, $O = \{0, 1\}$, such an outcome might be

$$s = \{a \mapsto 0, b \mapsto 1\}$$

This is a local section, since it is defined only on C, not on the whole of X!
Basic events are local sections

A basic event is to measure all the variables in a context \(C \in \mathcal{M} \), and observe the outcomes.

This is represented by a function \(s : C \rightarrow O \), i.e. \(s \in O^C \), or more generally \(s \in \prod_{x \in C} O_x \).

Example: if \(C = \{a, b\} \), \(O = \{0, 1\} \), such an outcome might be

\[s = \{ a \mapsto 0, b \mapsto 1 \} \]

This is a **local section**, since it is defined only on \(C \), not on the whole of \(X \)!

Basic operation of restriction: if \(C \subseteq C' \), \(s \in O^{C'} \), then \(s|_C \in O^C \).
Basic events are local sections

A basic event is to measure all the variables in a context $C \in \mathcal{M}$, and observe the outcomes.

This is represented by a function $s : C \rightarrow O$, i.e. $s \in O^C$, or more generally $s \in \prod_{x \in C} O_x$.

Example: if $C = \{a, b\}$, $O = \{0, 1\}$, such an outcome might be

$$s = \{a \mapsto 0, b \mapsto 1\}$$

This is a local section, since it is defined only on C, not on the whole of X!

Basic operation of restriction: if $C \subseteq C'$, $s \in O^{C'}$, then $s|_C \in O^C$.

E.g. $s|_{\{a\}} = \{a \mapsto 0\}$.

Empirical model $e : (X, M, O)$:

$$e = \{e_C \in \text{Prob}(O^C) \mid C \in M\}$$
Empirical model $e : (X, M, O)$:

$$e = \{ e_C \in \text{Prob}(O^C) \mid C \in M \}$$

In other words, the empirical model specifies a probability distribution over the events in each context.
Empirical model $e : (X, \mathcal{M}, O)$:

$$e = \{e_C \in \text{Prob}(O^C) \mid C \in \mathcal{M}\}$$

In other words, the empirical model specifies a probability distribution over the events in each context.

These distributions are the rows of our probability tables.
Formalizing Contextuality: Empirical models

Empirical model $e : (X, M, O)$:

$$e = \{ e_C \in \text{Prob}(O^C) \mid C \in M \}$$

In other words, the empirical model specifies a probability distribution over the events in each context.

These distributions are the rows of our probability tables.

Thus we have a family of probability distributions over different, but coherently related, sample spaces.
Empirical model $e : (X, M, O)$:

$$e = \{ e_C \in \text{Prob}(O^C) \mid C \in M \}$$

In other words, the empirical model specifies a probability distribution over the events in each context.

These distributions are the rows of our probability tables.

Thus we have a family of probability distributions over **different**, but **coherently related**, sample spaces.

(The coherent relationship is functoriality!)
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. "locally consistent." We want to do this by saying that the distributions "agree on overlaps." For all $C, C' \in M$:

$$e_{C|C \cap C'} = e_{C'|C \cap C'}.$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.

Marginalization of distributions: if $C \subseteq C'$, $d \in \text{Prob}(O_{C'})$, $d|_C(s) := \sum_{t \in O_{C'}|C} d(t)$. Compatibility is a general form of the important physical principle of No-Signalling; this general form is also known as No Disturbance.
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. “locally consistent”.

\[e_C|_{C \cap C'} = e_{C'}|_{C \cap C'} \]

Cf. the usual notion of compatibility of a family of functions defined on subsets.

Marginalization of distributions: if \(C \subseteq C' \), \(d \in \text{Prob}(O_{C'}) \),

\[d|_C(s) := \sum_{t \in O_{C'}, t|_C = s} d(t) \]

Compatibility is a general form of the important physical principle of No-Signalling; this general form is also known as No Disturbance.
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. “locally consistent”.

We want to do this by saying that the distributions “agree on overlaps”. For all $C, C' \in \mathcal{M}$:

$$e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. “locally consistent”.

We want to do this by saying that the distributions “agree on overlaps”. For all $C, C' \in \mathcal{M}$:

$$e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. “locally consistent”.

We want to do this by saying that the distributions “agree on overlaps”. For all $C, C' \in \mathcal{M}$:

$$e_C|_{C \cap C'} = e_{C'}|_{C \cap C'}.$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.

Marginalization of distributions: if $C \subseteq C'$, $d \in \text{Prob}(O^{C'})$,

$$d|_C(s) := \sum_{t \in O^{C'}, t|_C = s} d(t)$$
Restriction and Compatibility

We would like to express the condition that an empirical model is compatible, i.e. “locally consistent”.

We want to do this by saying that the distributions “agree on overlaps”. For all $C, C' \in \mathcal{M}$:

$$e_C|_{c \cap c'} = e_{C'}|_{c \cap c'}.$$

Cf. the usual notion of compatibility of a family of functions defined on subsets.

Marginalization of distributions: if $C \subseteq C'$, $d \in \text{Prob}(O^{C'})$,

$$d|_C(s) := \sum_{t \in O^{C'}, t|_C = s} d(t).$$

Compatibility is a general form of the important physical principle of No-Signalling; this general form is also known as No Disturbance.
Contextuality defined

An empirical model \(\mathcal{C} \in \text{M} \) on a measurement scenario \((X, \mathcal{M}, \mathcal{O})\) is non-contextual if there is a distribution \(d \in \text{Prob} (\mathcal{O} | X)\) such that, for all \(\mathcal{C} \in \text{M}\):

\[
 d | \mathcal{C} = e_{\mathcal{C}}.
\]

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered. We call such a \(d\) a global section.

If no such global section exists, the empirical model is contextual.

Thus contextuality arises where we have a family of data which is locally consistent but globally inconsistent.

The import of Bell's theorem and similar results is that there are empirical models arising from quantum mechanics which are contextual.
Contextuality defined

An empirical model \(\{ e_C \}_{C \in \mathcal{M}} \) on a measurement scenario \((X, \mathcal{M}, O)\) is **non-contextual** if there is a distribution \(d \in \text{Prob}(O^X) \) such that, for all \(C \in \mathcal{M} \):

\[
d|_C = e_C.
\]
Contextuality defined

An empirical model \(\{ e_C \}_{C \in \mathcal{M}} \) on a measurement scenario \((X, \mathcal{M}, O)\) is **non-contextual** if there is a distribution \(d \in \text{Prob}(O^X) \) such that, for all \(C \in \mathcal{M} \):

\[
d|_C = e_C.
\]

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.
Contextuality defined

An empirical model $\{e_C\}_{C \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is \textbf{non-contextual} if there is a distribution $d \in \text{Prob}(O^X)$ such that, for all $C \in \mathcal{M}$:

$$d|_C = e_C.$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a \textbf{global section}.

Samson Abramsky (Department of Computer Science) Introduction to the sheaf-theoretic approach to context
Contextuality defined

An empirical model \(\{ e_C \}_{C \in \mathcal{M}} \) on a measurement scenario \((X, \mathcal{M}, O)\) is **non-contextual** if there is a distribution \(d \in \text{Prob}(O^X) \) such that, for all \(C \in \mathcal{M} \):

\[
d|_C = e_C.
\]

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a \(d \) a **global section**.

If no such global section exists, the empirical model is **contextual**.
Contextuality defined

An empirical model $\{e_C\}_{C \in \mathcal{M}}$ on a measurement scenario (X, \mathcal{M}, O) is **non-contextual** if there is a distribution $d \in \text{Prob}(O^X)$ such that, for all $C \in \mathcal{M}$:

$$d|_C = e_C.$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a d a **global section**.

If no such global section exists, the empirical model is **contextual**.

Thus contextuality arises where we have a family of data which is **locally consistent** but **globally inconsistent**.
Contextuality defined

An empirical model \(\{ e_C \} \in \mathcal{M} \) on a measurement scenario \((X, \mathcal{M}, O) \) is **non-contextual** if there is a distribution \(d \in \text{Prob}(O^X) \) such that, for all \(C \in \mathcal{M} \):

\[
d|_C = e_C.
\]

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

We call such a \(d \) a **global section**.

If no such global section exists, the empirical model is **contextual**.

Thus contextuality arises where we have a family of data which is **locally consistent** but **globally inconsistent**.

The import of Bell’s theorem and similar results is that there are empirical models arising from quantum mechanics which are contextual.
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a' b</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a' b'</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(ab')</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(a'b)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(a'b')</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency:
We may extend from one context to the next

Global inconsistency:
Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next

Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next

Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(ab')</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(a'b)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(a'b')</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next

Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next
Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a'b</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a'b'</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next

Global inconsistency: Not all events extend to global valuations
Logical Contextuality

- Ignore precise probabilities
- Events are possible or not
- E.g. the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency: We may extend from one context to the next

Global inconsistency: Not all events extend to global valuations
Strong Contextuality

The PR Box

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(0, 0)</th>
<th>(1, 0)</th>
<th>(0, 1)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_2</td>
<td>b_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The PR Box
Bundle Pictures

Strong Contextuality
- E.g. the PR box:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

![Diagram of PR box](image-url)
Visualizing Contextuality

The Hardy table and the PR box as bundles
Comparison with the graph-theoretic CSW approach

Deriving an orthogonality graph G from an empirical model e

$$V = \{ (C, s) \mid C \in M, s \in \mathcal{O}_C \}$$

$$(C, s) \dashv (C', s') \iff \exists x \in C \cap C'. s(x) \neq s'(x).$$

(de Silva 2016): e is strongly contextual iff the independence number of G_e is less than $|M|$. There is more structure in an empirical model e than in G_e.

Samson Abramsky (Department of Computer Science, University of Oxford)
Comparison with the graph-theoretic CSW approach

Deriving an orthogonality graph $G_e = (V, E)$ from an empirical model e

\[V = \{(C, s) \mid C \in \mathcal{M}, s \in O^C\} \]

\[(C, s) \sim (C', s') \iff \exists x \in C \cap C'. s(x) \neq s'(x) \]

(de Silva 2016): e is strongly contextual iff the independence number of G_e is less than $|\mathcal{M}|$. There is more structure in an empirical model e than in G_e.

Samson Abramsky (Department of Computer Science, University of Oxford)
Comparison with the graph-theoretic CSW approach

Deriving an orthogonality graph $G_e = (V, E)$ from an empirical model e

$$V = \{(C, s) \mid C \in \mathcal{M}, s \in O^C\}$$

$$(C, s) \sim (C', s') \iff \exists x \in C \cap C'. s(x) \neq s'(x)$$

(de Silva 2016): e is strongly contextual iff the independence number of G_e is less than $|\mathcal{M}|$.
Comparison with the graph-theoretic CSW approach

Deriving an orthogonality graph $G_e = (V, E)$ from an empirical model e

\[V = \{(C, s) \mid C \in \mathcal{M}, s \in O^C\} \]

\[(C, s) \sim (C', s') \iff \exists x \in C \cap C'. s(x) \neq s'(x) \]

(de Silva 2016): e is strongly contextual iff the independence number of G_e is less than $|\mathcal{M}|$.

There is more structure in an empirical model e than in G_e.
Liar cycles

A Liar cycle of length N is a sequence of statements S_1: S_2 is true, S_2: S_3 is true, \ldots, S_{N-1}: S_N is true, S_N: S_1 is false.

For $N = 1$, this is the classic Liar sentence S: S is false.

Following Cook, Walicki et al. we can model the situation by boolean equations:

\[x_1 = x_2, \ldots, x_{n-1} = x_n, x_n = \neg x_1. \]

The “paradoxical” nature of the original statements is now captured by the inconsistency of these equations.
Liar cycles. A Liar cycle of length \(N \) is a sequence of statements

\[
S_1 : S_2 \text{ is true,}
\]
\[
S_2 : S_3 \text{ is true,}
\]
\[
\vdots
\]
\[
S_{N-1} : S_N \text{ is true,}
\]
\[
S_N : S_1 \text{ is false.}
\]

For \(N = 1 \), this is the classic Liar sentence

\[
S : S \text{ is false.}
\]
Liar cycles. A Liar cycle of length N is a sequence of statements

$$S_1 : S_2 \text{ is true,}$$
$$S_2 : S_3 \text{ is true,}$$
$$\vdots$$
$$S_{N-1} : S_N \text{ is true,}$$
$$S_N : S_1 \text{ is false.}$$

For $N = 1$, this is the classic Liar sentence

$$S : S \text{ is false.}$$

Following Cook, Walicki et al. we can model the situation by boolean equations:

$$x_1 = x_2, \ldots, x_{n-1} = x_n, x_n = \neg x_1$$
Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

\[S_1 : S_2 \text{ is true,} \]
\[S_2 : S_3 \text{ is true,} \]
\[\vdots \]
\[S_{N-1} : S_N \text{ is true,} \]
\[S_N : S_1 \text{ is false.} \]

For $N = 1$, this is the classic Liar sentence

\[S : S \text{ is false.} \]

Following Cook, Walicki et al. we can model the situation by boolean equations:

\[x_1 = x_2, \ldots, x_{n-1} = x_n, \ x_n = \neg x_1 \]

The “paradoxical” nature of the original statements is now captured by the inconsistency of these equations.
Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

\{ x_1, x_2 \}:
\[x_1 = x_2 \]

\{ x_2, x_3 \}:
\[x_2 = x_3 \]

...

\{ x_{n-1}, x_n \}:
\[x_{n-1} = x_n \]

\{ x_n, x_1 \}:
\[x_n = \neg x_1 \]

Any subset of up to \(n-1 \) of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the attempt to find a univocal path in the bundle diagram.
Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

\[
\begin{align*}
\{x_1, x_2\} &: x_1 = x_2 \\
\{x_2, x_3\} &: x_2 = x_3 \\
\vdots & \\
\{x_{n-1}, x_n\} &: x_{n-1} = x_n \\
\{x_n, x_1\} &: x_n = \neg x_1
\end{align*}
\]

Any subset of up to \(n-1\) of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.
Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

\[
\begin{align*}
\{x_1, x_2\} : & \quad x_1 = x_2 \\
\{x_2, x_3\} : & \quad x_2 = x_3 \\
\vdots & \\
\{x_{n-1}, x_n\} : & \quad x_{n-1} = x_n \\
\{x_n, x_1\} : & \quad x_n = \neg x_1
\end{align*}
\]

Any subset of up to \(n - 1\) of these equations is consistent; while the whole set is inconsistent.
We can regard each of these equations as fibered over the set of variables which occur in it:

\[\{x_1, x_2\} : x_1 = x_2 \]
\[\{x_2, x_3\} : x_2 = x_3 \]
\[\vdots \]
\[\{x_{n-1}, x_n\} : x_{n-1} = x_n \]
\[\{x_n, x_1\} : x_n = \neg x_1 \]

Any subset of up to \(n - 1 \) of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.
Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

\[
\begin{align*}
\{x_1, x_2\} : & \quad x_1 = x_2 \\
\{x_2, x_3\} : & \quad x_2 = x_3 \\
& \quad \vdots \\
\{x_{n-1}, x_n\} : & \quad x_{n-1} = x_n \\
\{x_n, x_1\} : & \quad x_n = \neg x_1
\end{align*}
\]

Any subset of up to \(n - 1\) of these equations is consistent; while the whole set is inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the attempt to find a univocal path in the bundle diagram.
Paths to contradiction

Suppose that we try to set a_2 to 1. Following the path on the right leads to the following local propagation of values:

\[
\begin{align*}
 a_2 &= 1; \\
 b_1 &= 0; \\
 a_1 &= 0; \\
 b_2 &= 0; \\
 a_2 &= 1
\end{align*}
\]

We have discussed a specific case here, but the analysis can be generalised to a large class of examples.
Suppose that we try to set a_2 to 1. Following the path on the right leads to the following local propagation of values:

$$a_2 = 1 \leadsto b_1 = 1 \leadsto a_1 = 1 \leadsto b_2 = 1 \leadsto a_2 = 0$$

$$a_2 = 0 \leadsto b_1 = 0 \leadsto a_1 = 0 \leadsto b_2 = 0 \leadsto a_2 = 1$$
Paths to contradiction

Suppose that we try to set a_2 to 1. Following the path on the right leads to the following local propagation of values:

$$a_2 = 1 \leadsto b_1 = 1 \leadsto a_1 = 1 \leadsto b_2 = 1 \leadsto a_2 = 0$$

$$a_2 = 0 \leadsto b_1 = 0 \leadsto a_1 = 0 \leadsto b_2 = 0 \leadsto a_2 = 1$$

We have discussed a specific case here, but the analysis can be generalised to a large class of examples.
Constraint Satisfaction

A (possibilistic) empirical model is a constraint satisfaction problem. Represent \(C \subseteq O \) as a formula.

Example: the PR Box

\[
\begin{array}{c|c}
\hline
& 0 & 1 \\
\hline
0 & ✓ & \times \\
1 & \times & ✓ \\
\hline
\end{array}
\]

\[
\begin{array}{c|c}
\hline
& 0 & 1 \\
\hline
0 & ✓ & \times \\
1 & \times & ✓ \\
\hline
\end{array}
\]

Local consistency is well-studied in (classical) CSP.
Constraint Satisfaction

Constraint satisfaction is an important paradigm in AI, algorithms and complexity.
Constraint Satisfaction

Constraint satisfaction is an important paradigm in AI, algorithms and complexity. A (possibilistic) empirical model is a constraint satisfaction problem!
Constraint Satisfaction

Constraint satisfaction is an important paradigm in AI, algorithms and complexity.

A (possibilistic) empirical model is a constraint satisfaction problem!

Represent $e_C \subseteq O^C$ as a formula.
Constraint Satisfaction

Constraint satisfaction is an important paradigm in AI, algorithms and complexity.

A (possibilistic) empirical model is a constraint satisfaction problem!

Represent $e_C \subseteq O_C$ as a formula.

Example: the PR Box

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Constraint Satisfaction

Constraint satisfaction is an important paradigm in AI, algorithms and complexity.

A (possibilistic) empirical model is a constraint satisfaction problem!

Represent $e_C \subseteq O_C$ as a formula.

Example: the PR Box

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>ab'</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b$</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>$a'b'$</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Local consistency is well-studied in (classical) CSP.
Topological Characterization

Local consistency — global inconsistency

Contextuality is pervasive (e.g. physics, computation, logic, ...)

Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory

Can be effectively visualised in topological terms

"Twisting" in bundle space gives rise to an obstruction to global consistency

Idea: use cohomology to characterize contextuality
Topological Characterization

- Local consistency — global inconsistency
Topological Characterization

- Local consistency — global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)

Samson Abramsky (Department of Computer Science, University of Oxford)
Topological Characterization

- Local consistency — global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, …)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
Topological Characterization

- Local consistency — global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms
Topological Characterization

- Local consistency — global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, . . .)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms
- “Twisting” in bundle space gives rise to an obstruction to global consistency
Topological Characterization

- Local consistency — global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, …)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms
- “Twisting” in bundle space gives rise to an obstruction to global consistency
- Idea: use cohomology to characterize contextuality
Why Cohomology?

A major theme of 20/21st century mathematics
Constructive witnesses for non-existence, instead of proofs by contradiction
Often computable
Increasingly coming into applications (e.g. persistent homology, TDA)
Part of the program of developing a widely applicable mathematical theory of contextuality

Samson Abramsky (Department of Computer Science, University of Oxford)
Why Cohomology?

- A major theme of 20/21st century mathematics
Why Cohomology?

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
Why Cohomology?

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable
Why Cohomology?

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable
- Increasingly coming into applications (e.g. persistent homology, TDA)
Why Cohomology?

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable
- Increasingly coming into applications (e.g. persistent homology, TDA)
- Part of the program of developing a widely applicable mathematical theory of contextuality
Summary of Cohomological Characterization

We have a cover \(U = \{ C_1, \ldots, C_n \} \) of measurement contexts.

Given \(s = s_1 \in S \mathcal{e}(C_1) \), we define \(z = \delta_0(s_1, \ldots, s_n) \),

where \(s_1 | C_1 \cap C_i = s_i | C_1 \cap C_i \), \(i = 1, \ldots, n \).

This is a cocycle in the relative Čech cohomology with respect to \(C_1 \).

We define \(\gamma(s) = [z] \in \check{\mathcal{H}}_1(U, F\bar{C}_1) \)

where \(F \) is the \text{AbGrp}-valued presheaf \(Z[S\mathcal{e}] \).

Here \(\gamma \) is in fact the connecting homomorphism of the long exact sequence.
Summary of Cohomological Characterization

We have a cover

\[\mathcal{U} = \{ C_1, \ldots, C_n \} \]

of measurement contexts.
Summary of Cohomological Characterization

We have a cover

\[\mathcal{U} = \{C_1, \ldots, C_n\} \]

of measurement contexts.

Given \(s = s_1 \in S_e(C_1) \), we define

\[z = \delta^0(s_1, \ldots, s_n), \]

where \(s_1|_{c_1 \cap c_i} = s_i|_{c_1 \cap c_i}, \ i = 1, \ldots, n. \)
Summary of Cohomological Characterization

We have a cover
\[\mathcal{U} = \{ C_1, \ldots, C_n \} \]
of measurement contexts.

Given \(s = s_1 \in S_e(C_1) \), we define
\[z = \delta^0(s_1, \ldots, s_n), \]
where \(s_1|_{C_1 \cap C_i} = s_i|_{C_1 \cap C_i}, \, i = 1, \ldots, n. \)

This is a cocycle in the relative Čech cohomology with respect to \(C_1 \).
Summary of Cohomological Characterization

We have a cover
\[\mathcal{U} = \{ C_1, \ldots, C_n \} \]
of measurement contexts.

Given \(s = s_1 \in S_e(C_1) \), we define
\[z = \delta^0(s_1, \ldots, s_n), \]
where \(s_1|_{C_1 \cap C_i} = s_i|_{C_1 \cap C_i}, \ i = 1, \ldots, n. \)

This is a cocycle in the relative \(\check{\text{Č}} \)ech cohomology with respect to \(C_1 \).

We define
\[\gamma(s) = [z] \in \check{H}^1(\mathcal{U}, F_{\check{C}_1}) \]
where \(F \) is the \textbf{AbGrp}-valued presheaf \(\mathbb{Z}[S_e] \).
Summary of Cohomological Characterization

We have a cover

\[\mathcal{U} = \{C_1, \ldots, C_n\} \]

of measurement contexts.

Given \(s = s_1 \in S_e(C_1) \), we define

\[z = \delta^0(s_1, \ldots, s_n), \]

where \(s_1|_{c_1 \cap c_i} = s_i|_{c_1 \cap c_i}, \ i = 1, \ldots, n. \)

This is a cocycle in the relative Čech cohomology with respect to \(C_1 \).

We define

\[\gamma(s) = [z] \in \check{H}^1(\mathcal{U}, \mathcal{F}_{\overline{C}_1}) \]

where \(\mathcal{F} \) is the \textbf{AbGrp}-valued presheaf \(\mathbb{Z}[S_e] \).

Here \(\gamma \) is in fact the \textbf{connecting homomorphism} of the long exact sequence.
Basic Results

Proposition

The following are equivalent:

1. The cohomology obstruction vanishes:
 \[\gamma(s_1) = 0. \]

2. There is a family \(\{ r_i \in F(C_i) \} \) with \(s_1 = r_1 \), and for all \(i, j \):
 \[r_i|_{C_i \cap C_j} = r_j|_{C_i \cap C_j}. \]

Proposition

If the model \(e \) is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If \(e \) is not strongly contextual, then the obstruction vanishes for some section in the support. Thus non-vanishing of the obstruction provides a cohomological witness for contextuality.
Basic Results

Proposition

The following are equivalent:

1. **The cohomology obstruction vanishes:** \(\gamma(s_1) = 0 \).

2. **There is a family** \(\{r_i \in \mathcal{F}(C_i)\} \) **with** \(s_1 = r_1 \), **and for all** \(i, j \):

 \[
 r_i|_{C_i \cap C_j} = r_j|_{C_i \cap C_j}.
 \]
Basic Results

Proposition

The following are equivalent:

1. The cohomology obstruction vanishes: $\gamma(s_1) = 0$.
2. There is a family $\{r_i \in \mathcal{F}(C_i)\}$ with $s_1 = r_1$, and for all i, j:

 $$r_i|_{C_i \cap C_j} = r_j|_{C_i \cap C_j}.$$

Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.
Basic Results

Proposition

The following are equivalent:

1. **The cohomology obstruction vanishes**: \(\gamma(s_1) = 0 \).
2. **There is a family** \(\{r_i \in \mathcal{F}(C_i)\} \) **with** \(s_1 = r_1 \), **and for all** \(i, j \):
 \[
 r_i|_{C_i \cap C_j} = r_j|_{C_i \cap C_j}.
 \]

Proposition

If the model \(e \) is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If \(e \) is not strongly contextual, then the obstruction vanishes for some section in the support.

Thus non-vanishing of the obstruction provides a cohomological witness for contextuality.
Notes on Cohomology

There are false positives because of negative coefficients in cochains.

We can effectively compute (mod 2) witnesses in many cases of interest:
GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, . . .

In Contextuality, Cohomology and Paradox (ABKLM 2015), we obtain very
general results in cases where the outcomes themselves have a module
structure (over the same ring as the cohomology coefficients).

This yields cohomological characterisations

[All-vs.-Nothing](Mermin).
These account for most of the contextuality arguments in the
quantum literature. In particular, we can find large classes of concrete
examples in

[stabiliser QM].

Theorem

Let \(S \) be an empirical model on \(\langle X, M, R \rangle \).

A

v

N

R

(\(S \))

\(\Rightarrow \)

S

C

A

f

S

C

S

C

Z

(\(S \))

\(\Rightarrow \)

S

(\(S \)).
Notes on Cohomology

- There are false positives because of negative coefficients in cochains.
Notes on Cohomology

- There are false positives because of negative coefficients in cochains.

- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, ...
Notes on Cohomology

- There are false positives because of negative coefficients in cochains.

- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, . . .

- In Contextuality, Cohomology and Paradox (ABKLM 2015), we obtain very general results in cases where the outcomes themselves have a module structure (over the same ring as the cohomology coefficients).
Notes on Cohomology

- There are false positives because of negative coefficients in cochains.

- We can effectively compute (mod 2) witnesses in many cases of interest: GHZ, Kylachko, Peres-Mermin, large class of Kochen-Specker models, .

- In Contextuality, Cohomology and Paradox (ABKLM 2015), we obtain very general results in cases where the outcomes themselves have a module structure (over the same ring as the cohomology coefficients).

- This yields cohomological characterisations of All-vs.-Nothing proofs (Mermin). These account for most of the contextuality arguments in the quantum literature. In particular, we can find large classes of concrete examples in stabiliser QM.

Theorem

Let S be an empirical model on $\langle X, M, R \rangle$. Then:

$$\text{AvN}_R(S) \Rightarrow \text{SC(Aff } S) \Rightarrow \text{CSC}_R(S) \Rightarrow \text{CSC}_\mathbb{Z}(S) \Rightarrow \text{SC}(S).$$
Relational databases
Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.
Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.
Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.

Samson Abramsky, ‘Relational databases and Bell’s theorem’, In In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman, Springer 2013.
Relational databases

This geometric picture and the associated methods can be applied to a wide range of situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal description we have given for the quantum notions of non-locality and contextuality, and basic definitions and concepts in relational database theory.

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-no</th>
<th>customer-name</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge</td>
<td>10991-06284</td>
<td>Newton</td>
<td>£2,567.53</td>
</tr>
<tr>
<td>Hanover</td>
<td>10992-35671</td>
<td>Leibniz</td>
<td>€11,245.75</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Consider again the Hardy model:

\[
\begin{align*}
(a_1, b_1) & : (0, 0) (0, 1) (1, 0) (1, 1) \\
(a_2, b_1) & : (0, 1) (1, 1) \\
(a_2, b_2) & : (1, 1)
\end{align*}
\]

Change of perspective:

- \(a_1, a_2, b_1, b_2\) attributes
- \(0, 1\) data values
- joint outcomes of measurements tuples
From possibility models to databases

Consider again the Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a_1, b_1))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((a_1, b_2))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((a_2, b_1))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((a_2, b_2))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
From possibility models to databases

Consider again the Hardy model:

\[
\begin{array}{cccc}
 & (0, 0) & (0, 1) & (1, 0) & (1, 1) \\
(a_1, b_1) & 1 & 1 & 1 & 1 \\
(a_1, b_2) & 0 & 1 & 1 & 1 \\
(a_2, b_1) & 0 & 1 & 1 & 1 \\
(a_2, b_2) & 1 & 1 & 1 & 0 \\
\end{array}
\]

Change of perspective:

\[a_1, a_2, b_1, b_2\] attributes

\[0, 1\] data values

joint outcomes of measurements tuples
The Hardy model as a relational database

The four rows of the model turn into four relation tables:

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>b₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>b₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₂</th>
<th>b₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₂</th>
<th>b₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What is the DB property corresponding to the presence of non-locality/contextuality in the Hardy table?

There is no universal relation: no table whose projections onto \{aᵢ, bᵢ\}, \(i = 1, 2\), yield the above four tables.
The Hardy model as a relational database

The four rows of the model turn into four relation tables:

$$\begin{array}{cc}
 a_1 & b_1 \\
 0 & 0 \\
 0 & 1 \\
 1 & 0 \\
 1 & 1 \\
\end{array}$$

$$\begin{array}{cc}
 a_1 & b_2 \\
 0 & 1 \\
 1 & 0 \\
 1 & 1 \\
\end{array}$$

$$\begin{array}{cc}
 a_2 & b_1 \\
 0 & 1 \\
 1 & 0 \\
 0 & 1 \\
\end{array}$$

$$\begin{array}{cc}
 a_2 & b_2 \\
 0 & 0 \\
 1 & 0 \\
 0 & 1 \\
\end{array}$$

What is the DB property corresponding to the presence of non-locality/contextuality in the Hardy table?
The Hardy model as a relational database

The four rows of the model turn into four relation tables:

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>b₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>b₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₂</th>
<th>b₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a₂</th>
<th>b₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What is the DB property corresponding to the presence of non-locality/contextuality in the Hardy table?

There is no universal relation: no table

<table>
<thead>
<tr>
<th></th>
<th>a₁</th>
<th>a₂</th>
<th>b₁</th>
<th>b₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

whose projections onto \(\{a_i, b_i\}, \ i = 1, 2 \), yield the above four tables.
A dictionary

<table>
<thead>
<tr>
<th>Relational databases</th>
<th>measurement scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>attribute</td>
<td>measurement</td>
</tr>
<tr>
<td>set of attributes defining a relation table</td>
<td>compatible set of measurements</td>
</tr>
<tr>
<td>database schema</td>
<td>measurement cover</td>
</tr>
<tr>
<td>tuple</td>
<td>local section (joint outcome)</td>
</tr>
<tr>
<td>relation/set of tuples</td>
<td>boolean distribution on joint outcomes</td>
</tr>
<tr>
<td>universal relation instance</td>
<td>global section/hidden variable model</td>
</tr>
<tr>
<td>acyclicity</td>
<td>Vorob’ev condition</td>
</tr>
</tbody>
</table>

We can also consider probabilistic databases and other generalisations; cf. provenance semirings.

Samson Abramsky (Department of Computer Science, University of Oxford)
A dictionary

<table>
<thead>
<tr>
<th>Relational databases</th>
<th>measurement scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>attribute</td>
<td>measurement</td>
</tr>
<tr>
<td>set of attributes defining a relation table</td>
<td>compatible set of measurements</td>
</tr>
<tr>
<td>database schema</td>
<td>measurement cover</td>
</tr>
<tr>
<td>tuple</td>
<td>local section (joint outcome)</td>
</tr>
<tr>
<td>relation/set of tuples</td>
<td>boolean distribution on joint outcomes</td>
</tr>
<tr>
<td>universal relation instance</td>
<td>global section/hidden variable model</td>
</tr>
<tr>
<td>acyclicity</td>
<td>Vorob’ev condition</td>
</tr>
</tbody>
</table>

We can also consider probabilistic databases and other generalisations; cf. provenance semirings.
Why do such similar structures arise in such apparently different settings? The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere! Physics, computation, logic, natural language, ... biology, economics, ... The **Contextual semantics hypothesis**: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory. More than a hypothesis! Already extensive results in Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, contextual fraction as a measure of contextuality, resource theory for contextuality, applications to quantum advantage, quantum homomorphisms and the quantum monad, developments towards quantum finite model theory ... And beyond: connections with databases, robust refinement of the constraint satisfaction paradigm, application of contextual semantics to natural language semantics, connections with team semantics in Dependence logics, ...
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere! Physics, computation, logic, natural language, . . . biology, economics, . . .

The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, contextual fraction as a measure of contextuality, resource theory for contextuality, applications to quantum advantage, quantum homomorphisms and the quantum monad, developments towards quantum finite model theory . . .

And beyond: connections with databases, robust refinement of the constraint satisfaction paradigm, application of contextual semantics to natural language semantics, connections with team semantics in Dependence logics, . . .
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, . . . biology, economics, . . .
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, ... biology, economics, ...

The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere!
Physics, computation, logic, natural language, . . . biology, economics, . . .

The **Contextual semantics hypothesis**: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere! Physics, computation, logic, natural language, . . . biology, economics, . . .

The **Contextual semantics hypothesis**: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

- Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, contextual fraction as a measure of contextuality, resource theory for contextuality, applications to quantum advantage, quantum homomorphisms and the quantum monad, developments towards quantum finite model theory . . .
Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can find it everywhere! Physics, computation, logic, natural language, . . . biology, economics, . . .

The Contextual semantics hypothesis: we can find common mathematical structure in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

- Quantum information and foundations: hierarchy of contextuality, logical characterisation of Bell inequalities, classification of multipartite entangled states, cohomological characterisation of contextuality, contextual fraction as a measure of contextuality, resource theory for contextuality, applications to quantum advantage, quantum homomorphisms and the quantum monad, developments towards quantum finite model theory . . .
- And beyond: connections with databases, robust refinement of the constraint satisfaction paradigm, application of contextual semantics to natural language semantics, connections with team semantics in Dependence logics, . . .
People

Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa, Ray Lal, Mehrnoosh Sadrzadeh, Phokion Kolaitis, Georg Gottlob, Carmen Constantin, Kohei Kishida, Giovanni Caru, Linde Wester, Nadish de Silva

Samson Abramsky (Department of Computer Science)
Adam Brandenburger, Lucien Hardy, Shane Mansfield, Rui Soares Barbosa, Ray Lal, Mehrnoosh Sadrzadeh, Phokion Kolaitis, Georg Gottlob, Carmen Constantin, Kohei Kishida. Giovanni Caru, Linde Wester, Nadish de Silva
References

Papers (available on arXiv):

The Penrose Tribar