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Minimum-Norm Reconstruction for Sensitivity-Encoded
Magnetic Resonance Spectroscopic Imaging

Javier Sdanchez-Gonzélez,'* Jeffrey Tsao,” Ulrike Dydak,> Manuel Desco,’

Peter Boesiger,? and Klaas Paul Pruessmann®

In this work we propose minimum-norm reconstruction as a
means to enhance the spatial response behavior in parallel
spectroscopic MRI. By directly optimizing the shape of the
spatial response function (SRF), the new method accounts for
coil sensitivity variation across individual voxels and their side
lobes. In this fashion, it mitigates the signal contamination and
side-lobe aliasing, to which previous techniques are suscepti-
ble at low resolution. Although the computational burden is
higher, minimum-norm reconstruction is shown to be feasible
using an iterative algorithm. Benefits in terms of SRF shape and
artifact suppression are demonstrated. Magn Reson Med 55:
287-295, 2006. © 2006 Wiley-Liss, Inc.
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In recent years, there has been significant progress in the
development of parallel imaging techniques, such as
SMASH (1), SENSE (2), SPACE-RIP (3), GRAPPA (4), and
PILS (5). These techniques have permitted significant scan
time reduction in both MRI and spectroscopic imaging
(MRSI) (6,7). Although these techniques differ in imple-
mentation and underlying approximations, they are all
based on the principle that the spatially varying sensitiv-
ities of the receiver coils complement the role of the mag-
netic field gradients in spatial encoding. As a result, it is
feasible to reduce the sampling density in k-space without
compromising the spatial resolution or the field of view
(FOV).

A key departure of parallel imaging from conventional
imaging is that the effects of the coil sensitivities are taken
into account during reconstruction. This departure affects
the properties of the reconstructed image, since the net
encoding functions are no longer orthogonal. For example,
the achievable signal-to-noise ratio (SNR) is spatially vary-
ing and, as the present work shows, the achievable reso-
lution is also spatially varying.

Parallel imaging reconstruction can be performed very
efficiently when k-space is sampled along a Cartesian grid.
In this case, the effects of k-space undersampling are par-
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ticularly easy to account for. In the image domain, they
result in aliasing that occurs among small sets of equidis-
tant voxels. Image reconstruction can then be achieved by
individual unfolding of these aliased sets. This is the ap-
proach underlying the common SENSE method in the case
of Cartesian k-space sampling (2). In the following it will
be simply be referred as SENSE for easier reading.

Straightforward image-domain unfolding requires rela-
tively little computation. It is important to note, however,
that this advantage is the result of a mild approximation.
SENSE strictly enforces the elimination of aliasing only in
the voxel centers and was therefore dubbed weak recon-
struction in Ref. (2). The potential downside of weak re-
construction is that appreciable residual aliasing may oc-
cur when coil sensitivities vary considerably over the ex-
tent of a voxel and its significant side lobes. This is
typically not of concern for high-resolution imaging since
coil sensitivities vary smoothly at the scale of common
voxel sizes. However, it gradually becomes a problem
when the scan resolution is reduced and becomes a serious
issue at the very low resolutions that are typically used in
MRSI.

In the present work, we propose an alternative recon-
struction approach that overcomes the described restric-
tions. The basic idea is to optimize the spatial response
function of reconstructed voxels as a whole rather than
only at the voxel centers. This is achieved by formulating
the encoding equation at an enhanced spatial resolution
and taking its minimum-norm solution as the recon-
structed image.

THEORY

We consider the most common type of MRSI where spatial
encoding is performed by phase-encoding gradients, fol-
lowed by readout along the time axis in the absence of
gradient fields. With this approach, spectral and spatial
reconstruction are independent, with spectral reconstruc-
tion amounting to Fourier transform of the whole data set
along the time axis. To keep the following formal treat-
ment as simple as possible we consider the situation after
such an initial temporal Fourier transform. Out of the
resulting k —k -w data set we consider only a single k-
space plane for some fixed value of w, leaving us with the
equivalent of a common MRI data set.

Using n, independent receiver coils for data acquisition
one obtains n, such data sets, which shall be denoted as
m{”), where +y counts the coils and « is the sampled posi-
tions in k-space. The contributions to each data value are
modeled as

m{) = [p(rwle, (x)dr + i) 1]

v
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where r denotes 3D position and p(r,w) represents the
spatio-spectral signal density of the scanned object, which
depends both on the object and on the sequence parame-
ters. e, . (r) denotes the net spatial encoding function com-
posed of harmonic modulation by the phase-encoding gra-
dients and the complex-valued spatial sensitivity s, (r) of
the yth coil:

ey.(r) = 5+ S (r). [2]

Note that the encoding functions e, ,(r) are not restricted
to any particular k-space sampling patterns. Therefore,the
model covers the case of arbitrary sampling patterns in
k-space. Note also that the encoding functions do not vary
over time, so they are also the same for all w. nfl“’i in Eq. [1]
represents stochastic noise in the intermediate data. It has
zero-mean Gaussian statistics and is uncorrelated between
different sampling times. Due to these characteristics the
noise statistics do not change under the initial Fourier
transform. The second-order statistics of m{®) are hence
given by

\P(‘YVK)V(\/’,K') = <T](y‘:)|z T](ym,)K’> = \I,v,y' 8K,K’7 [3]

where (-) and the bar indicate averaging and complex con-
jugation, respectively. ¥ denotes the common noise co-
variance matrix of the coil array (2) and the Kronecker
delta 3, . reflects the fact that noise is uncorrelated be-
tween different k-space positions. As Eq. [3] reflects, noise
correlation does occur among data that differ only in their
coil indices if the coil array as such exhibits noise corre-
lation. To simplify this situation, we further assume that
the receiver channels are initially precombined such as to
decorrelate and normalize their noise contents as de-
scribed in Ref. (8). In the statistics literature this step is
known as prewhitening. It is a simple and computationally
cheap linear operation, creating a set of virtual data chan-
nels, which can then be treated exactly like physical ones.
When using prewhitening it is important to perform the
corresponding precombination not only to the raw data
but also to the coil sensitivities that occur in Eq. [2]. The
benefit of this operation is that the noise covariance matrix
in Eq. [3] then becomes equal to identity and can hence be
omitted. For the following it is generally assumed that
prewhitening has been performed.

By discretizing the spatial coordinates, the signal part of
Eq. [1] can be expressed more conveniently in matrix form
as

m = Ep. [4]

Here, all values of m{") for the chosen o have been assem-
bled in the column vector m of length n_n,, n, denoting the
number of sampled k-space positions. p is a column vector
of length n,, listing unknown image values for the finite set
of pixel positions according to the discretization. E is the
(n.n,) X n, encoding matrix, listing the values of the
encoding functions at the pixel positions. Note that the
matrix representation is not limiting because the discreti-
zation can be made arbitrarily fine in order to achieve any
desired level of accuracy.
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Image reconstruction amounts to solving Eq. [4] for p.
For a sufficiently fine discretization, Eq. [4] is underdeter-
mined. In this case it has an infinite number of solutions.
In the absence of any additional information (9,10), a par-
ticularly attractive choice is the minimum-norm solution
(11). As the name suggests, the minimum-norm solution
has the smallest norm of all solutions satisfying Eq. [4]. It
can be argued to be optimal since it recovers all signal that
was actually encoded, while setting the remainder to zero
and thus eliminating all inconsistent noise.

The key difference between the proposed reconstruction
and SENSE is that for minimum-norm reconstruction the
encoding matrix E is discretized at a finer resolution than
the nominal image resolution, which is determined by the
extent of the sampled area in k-space. This finer discreti-
zation is key because it is the basis of controlling the
spatial response between voxel centers.

The minimum-norm solution p of Eq. [4] is

p =E'm, (5]

where the dagger indicates the Moore—Penrose pseudoin-
verse. The task of inverting the generally rectangular ma-
trix E can be translated into a more amenable symmetric
inversion by using two equivalent expansions of the
pseudoinverse (12),

p = (E"E)'E'"m (6]
p = E"(EE")'m, (7]

where the superscript H denotes the complex conjugate
transpose. Equations [6] and [7] are equivalent mathemat-
ically. However, Eq. [7] is more manageable computation-
ally, since the matrix inversion only involves a size of
(n,n) X (n.n,), which does not increase when the spatial
discretization is refined. An implementation of Eq. [7] can
be viewed as consisting of two steps:

c = (EEY)'m [8]
p = Efc. (9]

The first step (Eq. [8]) involves a base change from the data
domain to a space spanned by the left singular vectors of E,
which are equal to the rows of the matrix U in the singular
value decomposition

E=UX V¥ [10]
yielding a set of coefficients c. In the second step (Eq. [9]),
the reconstructed image p is generated as a linear combi-
nation of the complex conjugates of the encoding func-
tions. Equation [9] illustrates that the achievable resolu-
tion depends directly upon the encoding functions. In
particular, it shows that coil sensitivity gradients can en-
hance the resolution by adding to the spatial signal varia-
tion induced by the common B, gradients. This effect is
relevant whenever the coil sensitivities vary significantly
across the nominal voxel size. It is hence most appreciable
in low-resolution imaging and close to coil conductors
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where the coil sensitivity varies the most. As a conse-
quence, the spatial resolution of sensitivity-encoded MRI
and MRSI can be somewhat nonuniform across the image.

In general, Eq. [8] can be solved in two ways. The first is
to solve (E E®)c = m directly for the specific m of interest.
The second way is to determine the pseudoinverse (E E™)*
explicitly and then multiply it by m. The first approach is
generally faster. However, the second approach has the
advantage that once the pseudoinverse is calculated, it can
be applied again to any m. For MRSI where the number of
points along the spectroscopic axis is large, the computa-
tional load becomes either comparable or even smaller
with the second approach. The latter has the additional
advantage that the noise characteristics of the recon-
structed image can be determined efficiently from the
pseudoinverse, as described at the end of this section.
Therefore, the second approach is adopted in this work.
The pseudoinverse (E EP)' is calculated by applying an
eigendecomposition to (E EY). This decomposition is use-
ful because it yields the eigenvalues as a byproduct, en-
abling direct control over the amount of noise amplifica-
tion during matrix inversion (13).

In general, the inversion of (E E¥) should be regularized
(as described under Methods) in order to limit noise am-
plification. The final image for the chosen frequency o is
generated from the vector ¢ (Eq. [9]), either directly by
multiplying with E¥ or procedurally as described in Ref.
(8), which reduces the computation effort and eliminates
the need to store E™ explicitly.

Point Spread Function and Spatial Response Function

The properties of a linear reconstruction scheme such as
the minimum-norm reconstruction can be characterized
by the point spread function (PSF) and the spatial re-
sponse function (SRF). The PSF specifies the recon-
structed image for a point source at a given position,
whereas the SRF specifies the spatial weighting of signals
contributing to a given pixel value. The PSFs and SRF's are
the columns and rows, respectively, of the net depiction
matrix D, which is obtained by concatenating the recon-
struction and encoding matrices:
D = EYE EY)'E. [11]
Equation [11] reveals several properties of the PSF and
SRF. First, each pixel has an individual PSF and SRF,
corresponding to its individual column and row in the
matrix D. Thus, the shape of the reconstructed voxel will
generally vary with position, which, among others, can
reflect nonuniform spatial resolution as mentioned before.
Second, for a given voxel position, the corresponding PSF
and the SRF are complex conjugates of one another, since
D is Hermitian according to Eq. [11]. This is important
because the SRF is often more difficult to calculate directly
than the PSF. Given an efficient reconstruction algorithm,
the PSF can be calculated by reconstructing simulated data
from a point source. With this Hermitian relationship, the
corresponding SRF can then be readily obtained by com-
plex conjugation.
As illustrated by Eq. [11], all SRFs are linear combina-
tions of the encoding functions, which form the rows of
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the encoding matrix. It is interesting to note that these
specific linear combinations have an optimality property
that is closely related to the minimum-norm criterion.
Without regularization, the SRF of each voxel is the least-
squares optimal approximation of a Dirac distribution
placed at the voxel position. In the limit of very fine
discretization, the minimum-norm approach hence con-
verges to the strong reconstruction approach proposed in
Ref. (2). In this case, the matrix (E EY) approximates the
matrix of mutual scalar products of the continuous encod-
ing functions, which is inverted and then likewise left-
multiplied by E¥ in the strong approach. In this respect,
discretization along a refined grid represents the practical
bridging step that connects the computation-efficient but
less stringent weak approach and the more stringent but
less practical strong approach.

Noise Map Determination

The noise in the reconstructed image is given by

M, =Em. [12]
Thus, the noise variance of the reconstructed pixel values
is given by the diagonal elements of
(myny) = E'm)E™ = E'E", [13]
where the second equality holds due to the initial prewhit-
ening. Based on the singular value decomposition of E, Eq.
[13] can be rewritten as
(myn;) = VEIVH [14]
The square root of the diagonal entries of (n ;) yields the

SD of noise in each reconstructed voxel. This is referred to
as the noise map.

METHODS
Calculation of (E EM)' for Minimum-Norm Reconstruction

The eigendecomposition of the (E E)" matrix was com-
puted using the Lanczos method (14). The Lanczos method
calculates a tridiagonal decomposition of E E™ in a finite
number of steps. The resulting tridiagonal matrix was then
eigendecomposed with the QL method (15).

An important advantage of the Lanczos method is that it
preserves and exploits the symmetry of the matrix. It is
computationally efficient, since it relaxes the accuracy for
eigenvectors with small eigenvalues. In MRSI experi-
ments, where small eigenvalues are discarded by regular-
ization, it is unnecessary to estimate the complete set of
eigenvectors, thus enabling the computational burden to
be reduced. For this reason, we use the number of signif-
icant eigenvectors determined to provide a measure of the
efficiency of the Lanczos method. Additionally, like many
efficient linear solvers (15), it only calculates the image of
a specific vector under E E¥, but does not require an
explicit representation of the matrix itself. Applying the
effects of E EM procedurally is in fact more efficient than
multiplying a precalculated E E™ matrix explicitly (8).
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After the eigendecomposition, the regularized pseudo-
inverse (E E™)" is calculated by inverting the eigenvalues.
To avoid excessive noise amplification, for eigenvalues
below a condition number (CN) threshold the inverse was
set to zero. The CN is the ratio between the maximum and
the minimum eigenvalues included in the pseudoinverse
estimation.

The eigendecomposition of E E yields the matrices U
and ¥ from Eq. [13]. To determine the noise map via Eq.
[14], the ith right singular vector is determined as follows:

Vv, =E"U. 3 [15]

SENSE Reconstruction

For comparison, data were reconstructed with SENSE as
well. In contrast to the procedure reported in Ref.(6), the
low-resolution aliased images were first zero-padded in
k-space to the same voxel size as the sensitivity maps
before SENSE reconstruction. This zero-padding does not
affect the reconstruction, but allows better observation of
any potential artifacts. In fact, if this reconstruction is
resampled at the lower resolution, it is identical to the
reconstructed image from the unpadded data.

The sensitivity maps used to generate the data were also
used for reconstruction. Portions of the sensitivity maps
outside the object borders were set to zero. In some simu-
lations, the sensitivity maps for both reconstructions were
only set to zero beyond 10 voxels outside the object bor-
ders to test the effects of sensitivity extrapolation, previ-
ously proposed by Dydak et al. (6).

For the simulations and MRI studies, the accuracy of the
reconstruction was measured as the root-mean-square
(RMS) difference between the original and the recon-
structed low-resolution image. For MRSI experiments, we
calculated the RMS difference between the fully sampled
image and the undersampled image after reconstruction.

Simulation

Simulation was used to test the performance of minimum-
norm and SENSE reconstruction without noise contami-
nation. A six-element phased-array coil was assumed,
with complex-valued sensitivities calculated according to
Biot—Savart’s law at a spatial resolution of 256 X 256.
Low-resolution data for a single frequency w were gener-
ated from the numerical phantom by multiplying the
phantom with the complex-valued coil sensitivities, and
the central 32 X 32 k-space points were obtained as the
fully sampled low-resolution data. The k-space data were
then subsampled by a factor of 2 along k, and k,, to simu-
late a net fourfold SENSE acceleration.

Spatial Response Function

The pixelwise SRF was calculated following Eq. [11], with
a CN of 10. Noise maps were also estimated for minimum-
norm reconstruction, following Eq. [14], and for SENSE
reconstructions.

Synthetic Image

The numerical phantom used to test the algorithm con-
sisted of ellipses with different intensities inside a circle.
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The main circle contains a bright rim on one side, in order
to test potential problems with bright signals close to the
border, as occurring with residual fat signals in typical
neurologic SI applications.

Noisy synthetic images were generated by adding noise
with zero-mean complex-valued Gaussian noise to the k-
space data of each coil without correlation between coils.
For each coil the noise SD o was set to 0.1% of the signal
level at the k-space center.

Experimental Verification

The reconstruction was also tested with real data from MRI
and MRSI experiments. In all cases, slightly extrapolated
sensitivity maps were used in image reconstruction as
previously proposed in the literature (16).

Magnetic Resonance Imaging

Regular MR imaging was performed in a phantom using a
Philips Intera 1.5 T scanner (Philips Medical Systems,
Best, The Netherlands). The image was acquired with a
gradient echo sequence with a FOV of 210 X 210 mm? and
a matrix size of 256 X 256. The resolution was then re-
duced, selecting a 32 X 32 window in the k-space center.
Sensitivities were estimated from the high-resolution
(256 X 256) image from each coil.

The high signal-to-noise ratio of MRI studies, compared
with MRSI experiments, allowed us to better study the
behavior of the minimum-norm reconstruction for differ-
ent condition number thresholds (CN = 10,100, and 1000).

Spectroscopic Imaging

MRSI data were acquired from a phantom on a Philips
Intera 3 T scanner (Philips Medical Systems). As described
in Ref. (6), the phantom consisted of an elliptical tank with
three glass spheres mounted inside. The tank contained
water with 5 mM of N-acetylaspartate (NAA) and 5 mM of
lactate. The spheres (see Fig. 4) contained water doped as
follows: 10 mM NAA (left), 5 mM NAA + 5 mM lactate
(middle), and 10 mM o lactate (right). Spectra were ob-
tained from a single slice with sampling of a disk within
the central 32 X 32 k-space region. The FOV was 230 X
230 mm?, the slice thickness 20 mm, the spectral band-
width 2000 Hz, TE 144 ms, and TR 1700 ms. Water sup-
pression was achieved with a chemical-shift-selective
(CHESS) pulse centered on the water frequency. For
SENSE, the data were again decimated twofold along k,
and k, to simulate a net 4 acceleration. Sensitivity and B,
maps were determined from separate reference images ob-
tained with a gradient echo sequence. To reduce noise, we
applied a 10-Hz Lorentzian apodization in the time do-
main. The residual water signal was reduced by multiply-
ing with a sine function centered on the water frequency
along the spectral domain. After the spectroscopic image
reconstruction, the spectrum of each spatial position was
shifted according to the B, maps. Finally, metabolite im-
ages were formed by integrating the modulus over the
spectral frequency ranges pertaining to NAA (2.07-
1.97 ppm) and lactate (1.35—1.25 ppm).

In vivo spectroscopic image were obtained in a similar
fashion (TR = 1500 ms, TE = 144 ms, bandwidth =
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Figure 1. Spatial response function for three voxel locations (three first rows) and noise maps (bottom row). For the SRFs, one-dimensional
profiles through the center are overlaid to illustrate the details. The columns from left to right correspond to (a) minimum-norm, (b) SENSE,
(c) minimum-norm with sensitivity extrapolation, and (d) SENSE with sensitivity extrapolationy. The extrapolation range is indicated by white
dashed lines in (c) and (d). Sensitivity extrapolation overcomes residual aliasing for SENSE, while it overcomes noise increase close to the

object border for minimum-norm reconstruction.

2250 Hz), using sampling of a circle within the central
24 X 24 k-space region (FOV = 240 X 240 mm?). As with
the phantom data, water suppression was achieved by a
CHESS sequence and SENSE data were twofold decimated
along the k, and k, directions.

In the spectroscopic dimension we applied the same
processing as in the in vitro experiments. No postprocess-
ing was applied for lipid suppression in the final recon-
structed image. Images were generated by modulus inte-
gration of the frequency band for the NAA (2.07-1.97 ppm)
and lipid (1.35-1.25 ppm) peaks.

RESULTS
Simulation
Spatial Response Function

Figure 1 shows the SRFs of three pixels for minimum-
norm and SENSE reconstructions, without (a, b) and with
(c, d) sensitivity extrapolation. The first voxel (top row in
Fig. 1) was chosen such that two of its aliasing partners lie
just outside the object. The second voxel (second row in
Fig. 1) was the central voxel in the image with no direct
aliasing partners and the third voxel (third row in Fig. 1)
represented the generic case of full fourfold aliasing inside
the object.

Without sensitivity extrapolation, SENSE may lead to
aliasing artifacts if one or more of the alias peaks lies
outside the object border (see asterisk in Fig. 1b, top row).
This problem was studied previously in Refs. (6,17). It

occurs when an alias peak falls closely beneath the object
borders and is hence not considered in SENSE reconstruc-
tion. In such a situation the shoulders and side lobes of the
neglected aliasing peak may still cause appreciable arti-
fact. One previously proposed solution is to extrapolate
the sensitivity maps slightly beyond the object borders (6).
In contrast, minimum-norm reconstruction takes into con-
sideration the entire SRF, so this problem of unsuppressed
alias side lobes is avoided (Fig. 1a, top row). The side lobes
close to the SRF center are also lower, with a more sym-
metric distribution compared to SENSE (see arrows in
Figs. 1a and b, first and third rows). These improvements
are achieved at the expense of increased noise, as reflected
in the noise maps (bottom row in Fig. 1). In particular,
minimum-norm reconstruction suffers from significantly
increased noise close to the object border. This kind of
noise increase is known from the literature on finite-sup-
port extrapolation (10,18). It is caused by the sensitivity
maps being set to zero outside the object borders, which
implicitly enforces the constraint that all signals must
originate from within the object borders only. Noise com-
ponents that are inconsistent with this constraint result in
error particularly near the borders (10,18). A simple solu-
tion to this problem is to extrapolate the sensitivity maps
slightly. Most of the noise fringe then falls outside the
object.

Figures 1c and d show the reconstruction results with
sensitivity extrapolation. For SENSE, the residual aliasing
is now eliminated since the alias peak is now located in



292

Table 1
Standard Deviation of Noise for Voxels Inside the Object in Fig. 1

Sénchez-Gonzélez et al.

Minimum-norm

Minimum-norm SENSE with sensitivity . .SI.ENSE with )
. sensitivity extrapolation
extrapolation
Average noise 1.81 1.19 1.31 1.23
Maximum noise 16.16 4.50 4.50 5.41

the extrapolated region (Fig. 1d, top row) (6). However, the
SRF remains asymmetric about its main lobe (see arrows).
For minimum-norm reconstruction, the SRF shape re-
mains similar to before. However, the peripheral rim of
strong noise is now at the border of the extrapolated region
and hence outside the object (Fig. 1c, bottom row).

For the second and third voxels (second and third rows
in Fig. 1), the SRFs are approximately the same for both
methods, with and without sensitivity extrapolation. Nev-
ertheless, the SRF for minimum-norm reconstruction has
smaller side lobes for the central voxel and is more sym-
metric for the generic case of fourfold aliasing.

Table 1 shows the SD of noise for both methods with and
without extrapolation. In all cases, the statistics were per-
formed for voxels inside the object borders only. The re-
sults show that the minimum-norm reconstruction with-
out sensitivity extrapolation suffers a threefold increase in
maximum noise compared with reconstruction. However,
this problem is overcome with extrapolated sensitivity
maps, as the strong noise amplification then occurs be-
yond the object borders.

In the case without sensitivity extrapolation, the Lanc-
zos algorithm required only 961 of the 1536 eigenvalues/
eigenvectors of the E E™ matrix to reach a numerical con-
vergence limit of 107> relative to the maximum eigen-
value. In the case of sensitivity extrapolation, 1121 of 1536
eigenvalues/eigenvectors were calculated to reach the
same accuracy.

Synthetic Image

The numerical phantom is shown in Fig. 2a. The top and
bottom rows of Fig. 2 show the reconstruction results

True image Minimum norm

SENSE

without and with noise added to the data, respectively. In
the noiseless simulation (top row), errors in the recon-
structed images reflect inaccuracies in signal localization
only, whereas the data in the bottom row reflect genuine
noise as well.

Without sensitivity extrapolation, SENSE exhibits resid-
ual aliasing, as mentioned previously (6). It also exhibits
significant ringing artifacts, as expected from the larger
side lobes of the SRF (Fig. 1). In comparison, the mini-
mum-norm reconstruction does not exhibit appreciable
aliasing. Also, without sensitivity extrapolation, the recon-
structed image is seen to have improved resolution close to
the object border. This resolution improvement is ex-
pected from finite-support extrapolation (10,18) and is di-
rectly linked to the enhanced noise close to the borders.

With sensitivity extrapolation, the residual aliasing in
SENSE is reduced considerably, but remains noticeable
from the object’s bright rim (Fig. 2e). This is expected from
the SRF (Fig. 1d), since the SRF for the central voxel
exhibits slightly elevated “wings” toward the periphery,
indicating that the central voxel receives increased contri-
butions from those regions, compared to minimum-norm
reconstruction. In addition, it can be seen that the sensi-
tivity extrapolation hardly reduces ringing with SENSE.
Some ringing occurs also in the minimum-norm recon-
struction when extrapolating the sensitivity maps. How-
ever, even with extrapolation, the minimum-norm recon-
struction provides improved reconstruction, suffering less
ringing and avoiding side-lobe aliasing between the bright
rim and the center.

Quantitatively, Table 2 shows the root-mean-squares er-
ror for both reconstruction methods with and without

Minimum norm SENSE
with extrapolated with extrapolated
sensitivities sensitivities

Noiseless

With noise

Figure 2. Reconstruction results using minimum-norm (b, d) and SENSE (c, e) reconstruction without (b, c) and with (d, e) sensitivity
extrapolation. The true image is shown in high-resolution for comparison (a). The top row shows the noiseless S|mulat|on results, so artifacts
result from inexact signal localization only. The bottom row shows the simulation with noise, so image errors result from both inexact signal

localization and genuine noise.
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Table 2
Root-Mean-Square (RMS) Reconstruction Error in Simulation Results Shown in Fig. 2
Minimum-norm SENSE with
Minimum-norm SENSE with sensitivity sensitivity
extrapolation extrapolation
RMS error 0.043 0.108 0.064 0.099
Maximum RMS error 0.48 1.12 0.56 0.63

sensitivity extrapolation. In all cases, the statistics were
performed for voxels inside the object borders only. These
results show that on average the minimum-norm recon-
struction outperforms regular Cartesian SENSE both with-
out and with sensitivity extrapolation.

Experimental Verification

Nonspectroscopic Imaging

Figure 3 shows the original high-resolution image, the
SENSE reconstruction, and the results after minimum-
norm reconstruction for three different CN thresholds (10,
100, and 1000) using extrapolated sensitivity maps. For
this experiment, the numerical convergence limit was held
tighter (error less than 10~ ® of the maximum eigenvalue),
so the Lanczos method calculated the complete encoding
subspace (1536 of 1536 eigenvalues/eigenvectors).

SENSE reconstruction shows some aliasing contamina-
tion from the bright rim of the phantom in the center of the
image (Fig. 3e). On the contrary, minimum-norm images
do not show any aliasing artifacts at any CN (Figs. 3b, c,
and d). As the CN increases, the image resolution increases
at the periphery and the ringing artifacts are reduced. The
improvement in image resolution is related both to com-
plementary encoding from the steep sensitivity gradients
and to the prior information inherent to the finite support
of the sensitivity maps. It is important to note, however,
that the resolution benefit comes at the expense of noise
amplification.

Table 3 shows the RMS difference between the original
high-resolution image and the subsampled low-resolution
images (middle row). According to these results, the min-
imum-norm images are of higher fidelity than both the
SENSE and the fully sampled low-resolution image, par-
ticularly for high CN threshold. The benefit stems mainly
from increasing effective resolution in parts of the image as
the CN threshold increases. These beneficial effects also
cause increasing deviations between the minimum-norm
images and the low-resolution image, as data are partially

Minimum-Norm with
extrapolated
sensitivities

CN=10

Original Image

Fully sampled low
resolution image

Cc

recovered from the borders in k-space surrounding the
sampled central region in the low-resolution image.

Spectroscopic Imaging

Figure 4 shows the results of the in vitro experiment,
displaying metabolite maps for NAA and Lac. It shows a
fully acquired image for reference (Fig. 4a), a minimum-
norm image with CN = 10 (Fig. 4b), and a SENSE image
(Fig. 4d). Figures 4c and e show the differences between
the fully sampled image and the minimum-norm and
SENSE images, respectively. Both minimum-norm and
SENSE reconstructions were similar to the fully sampled
images, but with some noise increase as expected. The two
reconstruction methods yielded nearly identical results,
presumably because noise obscures the differences, as ex-
pected from Fig. 2. Also, this particular phantom did not
show strong metabolite contrast close to its surface, which
is most critical according to the numerical study.

Quantitatively, Table 4 shows the RMS reconstruction
difference for both methods with sensitivity extrapolation
and the mean signal intensity from fully sampled and
undersampled images. Again, the statistics were per-
formed for voxels inside the object borders only. They
confirm the visual assessment that minimum-norm and
conventional reconstruction performed nearly equally
well in this configuration.

The upper row of Fig. 5 shows NAA maps obtained in
vivo with minimum-norm (CN = 10) and SENSE recon-
struction, as well as the respective differences from a fully
sampled image (Fig. 5, bottom row). Although fat suppres-
sion was incomplete, these results illustrate the advantage
of minimum-norm reconstruction with respect to adverse
side-lobe effects of the SRF. The SENSE image shows some
residual ringing (see arrows), which is obviated with the
minimum-norm approach.

Table 5 shows the RMS error between the subsampled
images and the fully sampled image. Minimum-norm re-
construction performs slightly better than SENSE, mainly
due to some residual aliasing with the latter.

SENSE with
extrapolated
sensitivities

Minimum-Norm with
extrapolated
sensitivities

CN=1000

Minimum-Norm with
extrapolated
sensitivities

CN=100

Figure 3. (a) Original image acquired with a spatial resolution of 256 X 256. (b) Original low-resolution fully sampled image. (c, d, and e)
Images obtained from undersampled data with minimum-norm reconstruction at different condition number thresholds (10, 100, and 1000,

respectively). (f) Image obtained with SENSE.
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Table 3
RMS Errors in Experimental Images shown in Fig. 3

Sénchez-Gonzélez et al.

Fully sampled low-
resolution image

Min.-norm, extrapolated Min.-norm, extrapolated Min.-norm, extrapolated
sensitivities, CN = 10

SENSE with
sensitivity

sensitivities, CN = 100 sensitivities, CN = 1000 :
extrapolation

RMS deviation from
high-resolution

reference 55.98 54.24 47.38 41.91 59.51
RMS deviation from
low-resolution
reference 0 16.43 28.40 33.49 18.49
Note. Middle row, RMS deviation from high-resolution reference image. Bottom row, RMS deviation from fully sampled low-resolution
image.
Fully Minimum Modulus difference SENSE with Modulus difference
sampled norm with between Minimum extrapolated between SENSE
Images extrapolated norm and fully sensitivities and fully
sensitivities sampled image sampled image

NAA

Lactate

using minimum-norm reconstruction with CN =

To obtain the singular value decomposition of the E E¥
matrix for the phantom and in vivo experiments, the Lanc-
zos algorithm required 863 of 1170 and 530 of 666 eigen-
vectors, respectively, to achieve a numerical convergence
limit of 107°.

DISCUSSION

SENSE achieves its computational efficiency by resolving
the signal aliasing only at the voxel centers. This treatment
is sufficient for high-resolution imaging, but it may lead to
residual aliasing when the acquisition resolution is re-
duced. We show that minimum-norm reconstruction can
overcome this problem by controlling the SRF with higher
than nominal resolution. In addition to reducing residual
aliasing, the more exact treatment of the SRF also results in
more symmetric SRFs and lower side lobes, reducing ring-

Figure 4. Metabolite images for NAA (top row) and lactate (bottom row) from fully sampled data (a

) and from fourfold undersampled data,

10 (b) and SENSE reconstruction with sen3|t|V|ty extrapolation (d). ¢ and e show the
modulus difference between these results and fully sampled images.

ing artifacts. As revealed by the SRF, differences between
minimum-norm and SENSE reconstructions are more pro-
nounced for signals that originate close to the object bor-
ders. Therefore, minimum-norm reconstruction may be
particularly useful for brain MRSI without PRESS or outer
volume suppression where bright residual fat signals may
originate from the scalp region.

For both minimum-norm and SENSE reconstruction,
sensitivity extrapolation was found to improve image
quality, but for different reasons. In SENSE, extrapolation
is needed to avoid residual aliasing (6). In minimum-norm
reconstruction, extrapolation helps avoiding the noise in-
crease close to the border caused by finite-support effects
(9,10).

The improved SRF of minimum-norm reconstruction is
achieved at the expense of potential noise increase as
reflected by the condition number. Therefore, the improve-

Table 4
Errors and Mean Signal Amplitudes in in Vitro Metabolite Images shown in Fig. 4
Minimum-norm with SENSE with
Fully sampled low- B
resolution image extrapolated sensitivities extrapolated
9 (CN = 10) sensitivities
NAA RMS error 0 0.028 0.025
Mean NAA signal 22.10 22.68 22.63
Lactate RMS error 0 0.010 0.010
Mean lactate signal 1.98 2.24 2.21
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Fully Minimum Modulus difference SENSE with Modulus difference
sampled norm with between Minimum extrapolated between SENSE
Images extrapolated norm and fully sensitivities and fully
sensitivities sampled image sampled image

NAA

Lipids

Figure 5. Metabolite images for NAA (top row) and lipids (bottom row) from fully sampled data (a) and from fourfold undersampled data,
using minimum-norm reconstruction with CN = 10 (b) and SENSE reconstruction with sensitivity extrapolation (d). ¢ and e show the

respective modulus differences relative to fully sampled images.

Table 5
RMS Errors in in Vivo Metabolite Images Shown in Fig. 5
Minimum-norm with SENSE with
extrapolated sensitivities extrapolated
(CN = 10) sensitivities
NAA RMS error 0.030 0.033
Lipid RMS error 0.099 0.129

ment in image quality that can actually be realized de-
pends on the signal-to-noise ratio of the raw MR data. For
MRSI experiments with intrinsically low SNR the condi-
tion number threshold must be kept relatively low, thus
limiting the image quality benefit. In practice, noise in the
data may obscure the differences between minimum-norm
and SENSE reconstructions. Nevertheless, it is important
to note that the noise only makes the artifacts more diffi-
cult to spot, especially in low-resolution images typical of
MRSI.

CONCLUSION

We propose the use of minimum-norm reconstruction for
SENSE MRSI. The reconstruction procedure solves prob-
lems associated with low-resolution SENSE by consider-
ing the SRF as a whole rather than only in the voxel
centers. The improved SRF quality comes at the expense of
potential conditioning problems, which lead to noise am-
plification, particularly at the object borders. However,
this issue can be mitigated by sensitivity extrapolation and
regularization. Minimum-norm reconstruction requires
significantly more computation compared to common Car-
tesian SENSE. In this work, we applied the Lanczos
method to solve the underlying matrix inversion problem.
The proposed reconstruction method is applicable to arbi-
trary k-space sampling patterns, including variable density
sampling patterns.
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