
fnhum-13-00318 September 17, 2019 Time: 16:36 # 1

ORIGINAL RESEARCH
published: 19 September 2019

doi: 10.3389/fnhum.2019.00318

Edited by:
Dieter J. Meyerhoff,

University of California,
San Francisco, United States

Reviewed by:
Anne Marije Kaag,

University of Amsterdam, Netherlands
Joseph O’Neill,

University of California, Los Angeles,
United States

James J. Prisciandaro,
Medical University of South Carolina,

United States

*Correspondence:
Sharlene D. Newman

sdnewman@indiana.edu

Specialty section:
This article was submitted to

Health,
a section of the journal

Frontiers in Human Neuroscience

Received: 05 May 2019
Accepted: 29 August 2019

Published: 19 September 2019

Citation:
Newman SD, Cheng H,

Schnakenberg Martin A, Dydak U,
Dharmadhikari S, Hetrick W,

O’Donnell B (2019) An Investigation
of Neurochemical Changes in Chronic

Cannabis Users.
Front. Hum. Neurosci. 13:318.

doi: 10.3389/fnhum.2019.00318

An Investigation of Neurochemical
Changes in Chronic Cannabis Users
Sharlene D. Newman1,2* , Hu Cheng1,2, Ashley Schnakenberg Martin1, Ulrike Dydak3,4,
Shalmali Dharmadhikari3,4, William Hetrick1 and Brian O’Donnell1

1 Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States, 2 Program
in Neuroscience, Indiana University, Bloomington, IN, United States, 3 School of Health Sciences, Purdue University, West
Lafayette, IN, United States, 4 Department of Radiology and Imaging Sciences, Indiana University School of Medicine,
Indianapolis, IN, United States

With the legalization of recreational cannabis (CB) the characterization of how it
may impact brain chemistry is essential. Magnetic resonance spectroscopy (MRS)
was used to examine neurometabolite concentrations in the dorsal anterior cingulate
(dACC) in chronic CB users (N = 26; 10 females) and controls (N = 24; 10
females). The concentrations of glutamate (Glu), total creatine (tCr), choline (Cho),
total N-acetylaspartate (tNAA), and myo-inositol (mI) were estimated using LCModel.
The ANCOVAs failed to show significant differences between controls and CB
users. Regression analyses were then performed on the CB group to model each
neurometabolite to determine its relationship to monthly CB use, sex, the interaction
between CB use and sex. tCr was found to be predicted by both monthly CB use and
sex. While the regression model was not significant the relationship between monthly CB
use and Glu appears to be modulated by sex with the effect of monthly use (dose) being
stronger in males. tNAA failed to show an effect of CB use but did reveal an effect of sex
with females showing larger tNAA levels. Although the results presented are preliminary
due to the small sample size they do guide future research. The results presented
provide direction for further studies as they suggest that dose may significantly influence
the observance of CB effects and that those effects may be modulated by sex. Studies
with significantly larger sample sizes designed specifically to examine individuals with
varying usage as well as sex effects are necessary.

Keywords: cannabis, magnetic resonance spectroscopy, creatine, glutamate, anterior cingualte cortex

INTRODUCTION

The use of cannabis (CB) has increased over the past decade in the United States, and past-year
prevalence of CB use exceeds 10% (Grucza et al., 2016) with few users seeking treatment (Brown
et al., 2003). However, delta-9-tetrahydrocannabinol (THC), the compound responsible for the
psychoactive effects of CB, has been found to alter neurochemistry (Sneider et al., 2013; Colizzi et al.,
2016) which may interact with the development of psychiatric disorders such as schizophrenia and
depression (Auer et al., 2012; Egerton and Stone, 2012). In terms of the impact on neurochemistry,
the few studies using magnetic resonance spectroscopy (MRS) to measure neurometabolites in
humans have reported CB related modulations in glutamate (Glu), creatine (Cr), N-acetylaspartate
(NAA), myo-Inositol (mI) and choline (Cho) (Sneider et al., 2013).
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CB use impacts an array of neurochemicals with human
studies reporting that CB exposure interacts with NAA, Cr, mI
and Cho in addition to Glu (Cowan et al., 2009; Sneider et al.,
2013; Bitter et al., 2014). For example, in a review Sneider et al.
(2013) found that CB users had lower NAA (found in 6 out of 8
studies) than did controls. They also reported that frequency or
duration of CB use was associated with lower levels of NAA, Cho
and mI. NAA is an indicator of neuronal health (Chawla et al.,
2014); therefore, the lower levels of NAA suggest that CB use
may have a toxic effect on neurons. Additionally, Hermann et al.
(2007) found that recreational male CB users had lower NAA/tCr
than control non-users and Yücel et al. (2016) found lower levels
of NAA in the hippocampus in CB users. It should be noted
that the reports reviewed measured NAA from different brain
regions and often reported NAA as a ratio making replication
studies important.

As mentioned, CB use, particularly heavy use, has been linked
to psychiatric disorders (Moore et al., 2007; Lev-Ran et al.,
2014). A meta- analysis of longitudinal studies examining the
relationship between CB use and depression found a moderate
association between heavy CB use (defined as at least weekly
use) and increased risk of developing depression (Lev-Ran et al.,
2014). Additionally, a recent study using genome-wide data
from the International Cannabis Consortium and the Psychiatric
Genomics Consortium (Gage et al., 2017) found a small causal
effect of CB use on the development of schizophrenia and a
large effect of the reverse – schizophrenia risk predicts CB
use. Regardless of the direction of causation, there is a clear
relationship between CB use and psychosis.

Neurochemistry may be the key to understanding the
relationship between CB use and psychiatric disorders. In a recent
review it was found that NAA, Glu and Cr were systematically
found to be altered in psychosis patients (Li et al., 2018).
Creatine which plays a role in regulating energy metabolism
as a neuromodulator has been linked to psychiatric disorders
including schizophrenia (Volz et al., 1998; Allen, 2012) and
mood disorders (depression and anxiety) (Agren and Niklasson,
1988; Coplan et al., 2006; Mirza et al., 2006; Allen, 2012). NAA
is linked to neuronal integrity and mitochondrial dysfunction
(Moffett et al., 2007; Larabi et al., 2017). Li et al. (2018) also
found in their review that NAA appears to be downregulated in
psychosis which they argue is consistent with studies suggesting
myelination abnormalities in psychosis (Flynn et al., 2003;
Mighdoll et al., 2015). Finally, Glu is the most abundant
excitatory neurotransmitter in the brain and has also been linked
to psychiatric disorders. For example, a recent study found
that ACC Glu levels were higher in symptomatic compared to
remitted schizophrenia patients (Egerton and Stone, 2012) while
reductions in Glu were found in the ACC of patients with major
depression (Auer et al., 2012). In a recent study by Rigucci et al.
(2018) examining prefrontal Glu in early psychosis patients who
use CB and non-CB users found that Glu was lower in early
psychosis users compared to both controls and early psychosis
non-users but there were no differences between the non-user
early psychosis group and controls. However, a greater decline in
Glu with age was found in the early psychosis users compared to
the two non-user groups suggesting that CB use may interact with

disease progression. In sum, given that CB use has been found
previously to be correlated with changes in NAA, Cr and Glu
levels and these same neurochemicals are linked to psychiatric
disorders, disorders that have also been associated with CB use, it
is important to further explore these relationships.

The primary aim of the current study was to examine the
relationship between chronic CB use and neurochemistry in
humans using MRS. The target of investigation was the dorsal
anterior cingulate (dACC) cortex. The ACC has also been found
to have high CB1 receptor density (Glass et al., 1997; Tsou et al.,
1998) suggesting that CB is likely to have an impact on the
processing and neurochemistry of the region. It should also be
noted that the ACC is a heterogeneous region with a number of
subregions that have different cytoarchitecture and connectivity
patterns. The current study focuses on the dACC which has
been linked to inhibitory control processes and has been shown
previously to have Glu concentration differences in CB users
(Prescot et al., 2011, 2013). Additionally, because the region has
been examined previously it allows for extension and replication
of previous studies.

Differential effects of CB use as a function of sex have been
reported previously in humans as well as in animal models
(Calakos et al., 2017). For example, male CB users exhibit
higher circulating levels of delta9-tetrahydrocannabinol (THC),
the psychoactive component of CB (Jones et al., 2013); show
larger cardiovascular and subjective effects than female users
(Leatherdale et al., 2007); display more withdrawal symptoms;
and are less likely to be CB-only users (Hasin et al., 2008).
Preclinical studies in rats have found that males are more
sensitive to the hyperphagic and hypophagic effects of the CB1
receptor agonists and antagonists, respectively (Diaz et al., 2009)
and to their hypothermic and hyperthermic effects (Farhang
et al., 2009); females show greater catalepsy, antinociception and
locomotor effects (Tseng and Craft, 2004); and decreases in both
exploratory behavior and emotionality/anxiety levels (Biscaia
et al., 2003). The previous research strongly suggests that females
are different from males in their response to cannabinoids.
However, there are very few studies examining neurochemical
sex differences in humans. Those few studies that examine effects
of sex show sex differences. For example, a study examining sex
differences in CB users as a secondary aim found that female
users had higher levels of mI and lower levels of Glu+ glutamine
(Glx) in the dorsal striatum than control females, while male
users failed to show any effect (Muetzel et al., 2013). Also, Wiers
et al. (2016) using PET found that frontal dopamine signaling
is impaired in female CB users but not males. A secondary
analysis performed in the current study was designed to examine
the interaction between sex and CB use on neurochemistry. It
was predicted that CB use has a greater impact on female users
than male users.

It should be noted that differences in neurochemistry between
CB users and non-users in humans have not been consistently
observed (Cousijn et al., 2018). For example, in the Sneider et al.
(2013) review two of the 8 studies failed to show an effect of
CB use on NAA. There are a number of potential explanations
for the discrepant findings including that the effects of CB use
may be dependent upon age of participants, duration of use, and
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brain region examined. An additional explanation for discrepant
findings is the variation in the definition of chronic CB use.
Currently there is no consistency across studies regarding the CB
use criterion within the chronic CB user group [e.g., 10 uses in
past 12 months (Wright et al., 2016) to 5 times a week in the
past 12 months (Muetzel et al., 2013)]. In the current study we
examined whether CB dosage, defined here as monthly instances
of use, predicts neurometabolite levels and hypothesized that
higher CB use will be correlated with neurometabolite levels.

MATERIALS AND METHODS

Participants
A total of 69 current users and non-users participated in the
study. Subjects were recruited by local advertisements. After
detailed description of the study, written and verbal informed
consent was obtained from each participant. Subjects were
asked to refrain from alcohol or CB use the day prior to
the MRI scan. This study was carried out in accordance with
the recommendations of and approved by Indiana University’s
Institutional Review Board for the protection of human subjects.
All subjects gave written informed consent in accordance with the
Declaration of Helsinki.

The exclusion criteria include: younger than 18 years or older
than 40; presence of any neurological disorder; history of head
trauma with loss of consciousness greater than 10 min; learning
disability; diagnosed psychological disorders including major
depression, panic disorder, or psychosis; use of illicit drugs (other
than CB); alcohol dependence; and contraindication to MRI. For
the CB user group an additional exclusion criteria was CB use less
than one instance per week.

Participants completed a battery of assessments including
the Structured Clinical Interview for DSM-IV-TR (SCID-IV-
TR), Research Version (First et al., 2002); a written drug use
questionnaire; a 6-month time line follow back assessment to
estimate current and past use of CB and alcohol; the short
Michigan alcohol screening test (SMAST); Fagerstrom Test for
Nicotine Dependence (FTND); and the Wechsler Abbreviated
Scale of Intelligence (WASI; Wechsler, 1999). The control
subjects had no history of substance dependence, a negative urine
screen for CB and other substances, and no use of CB in the past
3 months. Groups did not significantly differ in age, IQ score,
sex, days since last alcohol use at the time of screening, or drinks
per week (p > 0.1). Additionally, when examining just the CB
group, there were no sex differences in age, age of CB use onset,
monthly CB use, or lifetime CB use (p > 0.1); females were similar
to males. CB use disorder was not a requirement for the CB
user group.1

1Based on the SCID 10 of the CB users failed to meet criteria for CUD. In order
to meet criteria for diagnosis for abuse/dependence participants had to endorse
impairment and/or withdrawal symptoms from use. Given that no collateral
reports were obtained and that participants often deny or lack insight about
potential impairment we argue for the use of amount of use versus diagnostic
categorization. Additionally, when comparing the 2 groups of users – those with
and without CUD diagnosis – there were no significant or marginally significant
group differences for any of the measures with the exception of age of CB initiation
(M = 17 for non-CUD; M = 15 for CUD).

MRI Acquisition
Image acquisition was performed on a 3T Siemens Tim-Trio
MRI scanner. Foam pads were used to minimize head motion
for all participants. High-resolution T1-weighted anatomical
images were acquired in the sagittal plane using an MP-RAGE
sequence (TR = 1.8 s; TE = 2. 67 ms; inversion time = 0.9 s;
flip angle 9◦; imaging matrix = 256 × 256; 192 slices; voxel
size = 1 × 1 × 1 mm3). MRS was performed using a single-voxel
PRESS sequence (TR/TE = 2000/30 ms, bandwidth = 2000 Hz,
2048 data points, 120 averages, scan time = 4 min), followed
by a water reference scan (8 averages). Each voxel measurement
began with the FASTMAP shimming method twice (Gruetter,
1993; Gruetter and Tkác, 2000). FASTMAP is a pulse sequence
that samples the magnetic field along a group of radial columns
and then adjusts the first order and second order shims. Each run
of FASTMAP is one iteration. Manual shimming was performed
only if FASTMAP did not give a good shimming result. The full
width at half maximum (FWHM) of the linewidths of the water
peak was all below 14 Hz after these procedures. All scans were
visually checked to ensure acceptable MRI quality.

Voxel Placement
The MR spectroscopy voxel was positioned in the dACC using
the T1-weighted image. The voxel was positioned in the following
way: locate the mid-slice of the corpus callosum on the sagittal
slice, then place the voxel directly above the superior and
posterior genu of the corpus callosum with the long axis aligned
with them (see Figure 1). The voxel size was 15× 20× 25 mm3.

MRS Analysis
The MRS data were processed with LCModel (version 6.2-0R)2

using default settings for water attenuation, estimated water
concentration and baseline modeling. LCModel was used to fit
each spectrum as a weighted linear combination of a basis set of
in vitro spectra from individual metabolite solutions. The basis set
was provided by LCModel for TE 30 ms and 123 MHz. The water
reference signal was used for eddy current correction and scaling
the metabolite concentrations. The concentrations of glutamate
(Glu), total creatine (tCr), choline (Cho), total N-acetylaspartate
(tNAA) and myo-inositol (mI) were expressed in institutional
units. LCModel also reports an estimated relative standard
deviation (%SD) for each fitted component, which is equivalent to
the Crame’r-Rao lower bounds (CRLB). Subjects were excluded
if the sum of CRLB values of creatine and phosphocreatine
was greater than 17%. This threshold was chosen based on the
visual check of spectrum quality. It is stricter than that used
in the previous literature, which was normally set to 20% for
any individual metabolite. As a matter of fact, the CRLB values
were all smaller than 20% for Glu and other metabolites for the
remaining subjects in our study.

The neurometabolite concentrations were normalized using a
method described by Gussew et al. (2012). This method controls
for MRS signal differences in tissue composition within the
measured voxel across subjects. The high-resolution structural
scan acquired to position the voxel during data acquisition was

2http://www.s-provencher.com/
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FIGURE 1 | An example of the location of the voxel for Magnetic resonance spectroscopy (MRS) in the dorsal anterior cingulate along with the resultant spectrum
processed by LCModel. The fitted spectrum (red) is superimposed on the original spectrum (black); the residual of fitting is on the top while the baseline is at the
bottom. The linewidth is 0.033 ppm.

used to determine the tissue composition. The T1-weighted
image was segmented for gray matter, white matter, and CSF
with SPM123. The corresponding fraction of tissue volumes
in the MRS voxel was calculated and used to correct for
neurometabolite concentration with respect to heterogeneous
tissue compositions according to equation 2 in the paper by
Gussew et al. (2012). Additional parameters for the correction
included the T1 and T2 relaxation time of water in GM
(1.82/0.10 s), WM (1.08/0.07 s), and CSF (4.16/0.50 s) (Lin
et al., 2001; Stanisz et al., 2005; Piechnik et al., 2009), relative
water contents in GM (0.78), WM (0.65) and CSF (1.0) (Ernst
et al., 1993), and T1 and T2 of Glu in the GM (1.27/0.16 s)
and WM (1.17/0.17) (Ernst et al., 1993; Mlynárik et al., 2001),
respectively. Thus, corrected metabolite concentrations are given
in institutional units. Because tCr was found to be predicted
by CB use we did not normalize other metabolites to tCr. An
analysis examining the ratio of neurometabolites with tCr was
performed to make comparisons with previous studies easier.
Those results can be found in the Supplementary Table S7 and
Supplementary Figure S2.

Statistical Analyses
A correlation analysis was performed to explore the relationship
between measures. Secondly, a 2 (group) by 2 (sex) ANOVA
was performed on each MRS measure to examine group and
sex effects. Finally, a two-step multiple regression analysis was
performed with only the CB users to determine the impact of

3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

monthly use on metabolite measures. In the first step monthly
use, and sex were entered into the model. In the second step
the interaction between sex and monthly CB use was included
(an analysis with alcohol and nicotine use measures entered in the
model can be found in the Supplementary Material). Analyses
were performed using SAS version 9.4. Multiple comparison
correction was performed using Bonferroni correction. For
the model statistics an alpha of 0.025 (0.05/2) and for the
parameter estimates an alpha of 0.05/#of predictors were used to
determine significance.

RESULTS

Of the 69 participants, six were removed due to a history of
alcohol use disorder, 4 were removed due to an axis I psychiatric
disorder, 2 due to insufficient CB use, 5 due to noisy MRS data,
and 2 due to neurological disorders. Data from fifty participants
were included in the final analyses – twenty-six current (CB) users
and 24 healthy non-user controls (see Table 1).

Voxel Tissue Composition
The majority of the MRS voxel was composed of gray matter
in both groups. An independent samples t-test was performed
and the gray matter concentration did not differ between groups
(p = 0.75; control group 89% gray matter; user group 85%
gray matter). White matter concentration was found to be
different between groups with the user group having a larger
concentration of white matter (p = 0.04). The tissue fractions
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were then used to correct for the concentrations as indicated by
Gussew et al. (2012). The analysis was also performed with the
ratio of GM/WM included as a covariate (see Supplementary
Table S8).

Data Quality
The FWHM and S/R from the LCModel Miscellaneous Output
are measures of the linewidth and signal-to-noise ratio (SNR)
of the in vivo spectra. Independent samples t-tests were used to
examine measures of data quality. No differences were found
between the user and control groups in linewidth (p = 0.44;
control: 0.0347 ± 0.0042; CB: 0.0335 ± 0.006) or SNR (p = 0.63;
control: 63.8± 10.1; CB: 62.6± 7.5).

Correlation Analyses
The correlation results are shown in Tables 2, 3. As shown, the CB
user group shows significant positive correlations between tNAA
and tCr, Glu and mI while the control group does not show such
significant correlations between those metabolites. Additionally,
in the CB user group there is a negative correlation between
monthly CB use and drinks per week such that those who drink
more use CB less.

TCr
The ANOVA failed to show an effect of group or sex
(F < 1); additionally the interaction was also not significant
[F(1,49) = 1.87, p = 0.18]. Both regression models were significant
(see Table 4 and Figure 2). CB monthly use significantly
predicted tCr levels in both the model with and without
the interaction term. Sex was marginally significant in the
model without the interaction term but significant in the
model with the term.

TABLE 1 | Demographics.

Controls CB Users

N 24 26

#Males 10 10

Age 21.5 ± 2.3 21.4 ± 4.5

(18−26 years) (18−39 years)

Age of CB initiation n/a 16.4 ± 2.5 years

Average monthly CB use 33.1 ± 27.2 instances/month∗

0 19.7 ± 9.1 days/month∗

Lifetime CB use (instances) 1 ± 2.7 1442.1 ± 2115.5∗

Average days since last CB
use (prior to scan)

n/a 1 ± 1.8 days

Average days since last
alcohol use (prior to scan)

138.9 ± 403.2 22.2 ± 59.4

Average drinks per week 2.2 ± 2.9 3.3 ± 3.2

FNTD 0 ± 0 0.77 ± 0.27

% have used nicotine in
month prior to scan

4% 19%

WASI 113.7 ± 11.1 110.7 ± 9.2

∗ indicates significant difference between CB users and controls, based on 2-tailed
t-test.

Glu
The ANOVA failed to show an effect of group or sex
(F < 1); additionally the interaction was also not significant
[F(1,49) = 2.53, p = 0.12]. Both regression failed to reach
significance (see Table 5 and Figure 2). When examining
each predictor variable the parameter estimate for monthly use
appears to be modulated by the introduction of the interaction
term to the model (although the factor is not significant when
corrected for multiple comparisons) suggesting that the effect of
monthly CB use is different for males and females. However, these
results should be interpreted with great caution given the small
sample size and small effect size.

tNAA
The ANOVA failed to show an effect of group or an interaction
between group and sex (F < 1). However, there was a significant
effect of sex [F(1,49) = 7.44, p = 0.009]; females had a higher
level of tNAA than did males. Neither regression model was
significant (see Supplementary Table S5, Supplementary Figure
S1, and Figure 2). When examining the predictor variables sex
approached significance.

mI
The ANOVA failed to show an effect of group or sex
(F < 1); additionally the interaction was also not significant
[F(1,49) = 2.7, p = 0.11]. Neither regression model was significant
(see Supplementary Tables S1, S4, Supplementary Figure S1,
and Figure 2).

TABLE 2 | Correlation analysis for control group.

CBmonth Drinks FNTD tCr Glu tNAA mI Cho

CBmonth . . . . . . . .

drinks 1 . 0.24 0.04 −0.17 0.14 0.04

FNTD . . . . .

tCr 1 0.02 0.18 0.45 0.39

Glu 1 −0.3 0.14 −0.3

tNAA 1 0.04 0.09

mI 1 0.55

Cho 1

Bolded values indicate statistical significance.

TABLE 3 | Correlation analysis for CB user group.

CBmonth Drinks FNTD tCr Glu tNAA mI Cho

CBmonth 1 −0.55 −0.26 0.47 0.25 0.34 0.28 0.09

drinks 1 −0.17 −0.12 −0.23 0.02 −0.13 −0.16

FNTD 1 −0.21 −0.04 −0.36 0.16 −0.005

tCr 1 0.38 0.66 0.4 0.29

Glu 1 0.46 0.49 −0.09

tNAA 1 0.61 0.22

mI 1 0.38

Cho 1

Bolded values indicate statistical significance.
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TABLE 4 | Regression analysis with tCr as the dependent variable for the CB users only.

Variable DF Parameter Standard t Pr > |t| Standardized Variance 95% Confidence
estimate error estimate inflation limits

Without interaction term: F(2,26) = 7.16, p = 0.0036, R2 = 0.37, Bayes Factor = 6.58

Sex 1 −0.16 0.072 −2.32 0.029 −0.38 1.01 −0.32 −0.018

CBmonth 1 0.0037 0.0011 3.23 0.0035 0.53 1.01 0.0013 0.006

With the interaction term: F(3,23) = 5.43, p = 0.0057, R2 = 0.4145, Bayes Factor = 3.1

Sex 1 −0.22 0.83 −2.66 0.014 −0.50 1.36 −0.39 −0.049

CBmonth 1 0.003 0.0013 2.42 0.024 0.43 1.24 0.00043 0.0056

CBmonth∗Sex 1 0.0034 0.0027 1.27 0.22 0.26 1.64 −0.0022 0.009

Bolded values indicate statistical significance.

FIGURE 2 | Scatter plots depicting each neurometabolite level (x-axis), monthly CB use (y-axis) and sex (green = CB user females, and purple = CB user male4).

Cho
The ANOVA failed to show an effect of group [F(1,49) = 2.12,
p = 0.15], sex (F < 1), or an interaction [F(1,49) = 1.01, p = 0.32].
Neither regression model was significant (see Supplementary
Table S6 and Supplementary Figure S1).

DISCUSSION

The goal of the current study was to examine the relationship
between chronic CB use and neurochemistry in humans.
Neurometabolite concentrations in the dACC were measured
using MRS. Unlike in some previous studies, the current study
failed to show significant differences between the control and CB
user group. However, when using regression models to examine

the factors that may contribute to the variance in neurometabolite
concentrations within the CB user group two major observations
were reported. First, monthly CB use consistently predicted total
creatine in the CB user group regardless of the other factors
entered into the regression model. Second, sex was a consistent
predictor of total NAA in the CB group and it was a significant
factor in the ANOVA.

Total creatine is considered to have stable concentrations
and, as mentioned above, has been widely used as an internal
reference such that many MRS studies report concentrations of
other metabolites as a ratio of tCr. In the current study, tCr was
consistently found to be predicted by monthly CB use regardless
of the other measures included in the regression model. The
finding that tCr is modulated by CB use has been reported
previously (Prescot et al., 2011). Prescot et al. (2011) found
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TABLE 5 | Regression analysis with Glu as the dependent variable for the CB users only.

Variable DF Parameter Standard t Pr > |t| Standardized Variance 95% Confidence
estimate error estimate inflation limits

Without interaction term: F(2,24) = 2.31, p = 0.12, R2 = 0.16, Bayes Factor = 0.21

Sex 1 −0.23 0.15 −1.49 0.15 −0.28 1.0 −0.54 0.087

CBmonth 1 0.0041 0.0024 1.7 0.1 0.32 1.0 −0.00087 0.009

With the interaction term: F(3,23) = 2.08, p = 0.13, R2 = 0.21, Bayes Factor = 0.12

Sex 1 −0.12 0.18 −0.67 0.51 −0.15 1.36 −0.48 0.24

CBmonth 1 0.0055 0.0026 2.08 0.048 0.43 1.24 0.000043 0.011

Sex∗CBmonth 1 −0.007 0.0057 −1.23 0.23 −0.29 1.64 −0.019 0.0048

Bolded values indicate statistical significance.

that tCr levels decreased in adolescent CB users compared to
controls. As a result of this modulation of tCr by CB use the
measures presented in the current study were not normalized to
it and instead all measures were normalized to tissue water and
corrected for tissue composition.

Recently it has been reported that Cr has neuroprotective
properties with it potentially being used to treat a number
of disorders. For example, Cr was given to children and
adolescents with traumatic brain injury and was shown to
improve cognitive performance (Sakellaris et al., 2006). Creatine
kinase and its substrates creatine and phosphocreatine are
part of the cellular energy buffering and transport system that
connects sites of energy production (mitochondria) to sites of
energy consumption (Hemmer and Wallimann, 1993). Previous
studies have found that Cr administration increases brain
concentrations of phosphocreatine and inhibits mitochondrial
permeability transition, both of which may exert neuroprotective
effects (Hemmer and Wallimann, 1993; O’Gorman et al., 1996;
Ferrante et al., 2000). Phosphocreatine has also been found to
stimulate synaptic Glu uptake, reducing extracellular Glu (Xu
et al., 1996), thereby providing an additional neuroprotective
pathway. Another potential neuroprotective mechanism of Cr
is related to its relationship with NAA. Ferrante et al. (2000)
found a correlation between Cr and NAA in Cr treated transgenic
Huntington’s mice but not untreated mice. NAA has been
shown previously to be an indicator of neuronal health (Chawla
et al., 2014). Interestingly, in the current study a positive
correlation between tNAA and tCr was found for the CB
users (r = 0.66) but not the controls (r = 0.18). Although
the variance in both tNAA and tCr in the CB user group
can be explained partially by CB monthly use, the correlation
between tNAA and tCr remains significant when partialing
out the impact of monthly CB use (r = 0.6, p = 0.001).
These results suggest that the young adult users examined
in this study may have increased brain concentrations of tCr
as a mechanism to protect itself from damage caused by an
increase in exogenous cannabinoids. This is different from the
results reported by Prescot et al. (2011) which shows that
adolescents show decreases in tCr. This discrepancy may be
due to differences in the subject population. The population
examined in this study is a high functioning chronic CB user
group with normal to high IQ. Further studies examining how
age of CB initiation, cognitive capacity and years of use may
interact with tCr are necessary.

A second finding of the study is a sex differences in tNAA
levels such that women had a higher level of tNAA than men.
While there are few studies examining sex differences in tNAA
one recent study reported similar results. Silaidos et al. (2018)
examined NAA as a proxy for mitochondrial dysfunction. There
they found that female participants had higher NAA levels in
both gray and white matter than male participants did; a similar
finding to that reported in the current study. While there was no
interaction between sex and CB use for the NAA measure, this
sex difference and how it may interact with the effects of CB use
warrants further study.

Glutamate is one of the brain’s primary excitatory
neurotransmitters whose concentration is tightly controlled
due to its potential toxic properties. Although previous studies
have found a relationship between CB use and Glu the current
study failed to show a strong effect. However, the results do
advocate for future studies with a much larger sample size
in order to fully explore factors that may interact with the
relationship between CB use and Glu levels. For example, the
current results show that monthly CB use begins to approach
significance when the interaction between monthly use and
sex is included in the model suggesting that Glu levels may be
dependent on the amount of CB use and that the relationship
between Glu and CB use may be modulated by sex. The potential
influence of sex on the relationship between CB dose and
Glu levels support previous reports in preclinical studies and
previous studies in humans by Muetzel et al. (2013) and Prescot
et al. (2011). In fact, Prescot et al. (2011) had a very similar result
in that the effect of Glu was increased when sex was included in
the model. Again, while the interpretation of this effect should
be considered with caution, they clearly indicate a direction for
future research.

In addition, more fully examining the interaction between CB
use and other substance use including alcohol and nicotine on
neurometabolite levels is important. The current study attempted
to control for the use of other substances, however, both alcohol
and nicotine are used in higher rates in the CB user population
than the non-user in the current study. Additionally, a recent
study by Schulte et al. (2017) found that differences in dACC
Glx (glutamate + glutamine) were not dependent on the type of
substance used whether it be nicotine or polysubstance users.

It should be noted that our results are contradictory to those
reported previously by Prescot et al. (2011) and Muetzel et al.
(2013) in that both of these previous studies reported a decrease
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in neurometabolite levels in the ACC of adolescents and in the
striatum of college-aged individuals, respectively, while we show
increases in college-aged individuals. There are a number of
reasons for these discrepant results. First, most studies, including
Muetzel et al. (2013), use tCr to normalize neurometabolite
concentrations and report a ratio with tCr. Because we observed
CB effects of tCr we do not report concentrations in terms of a
ratio. Second, in the current study we normalized the differing
effects of gray and white matter on the MRS signal which was not
performed in the previous studies. Finally, there were differences
in the LCModel processing and the version of the software used
to perform quantification. For instance, the analysis window was
set to 0.2–4.0 ppm in our study in contrast to 0.5–4.5 ppm by
Prescot et al. (2011, 2013). The latter three reasons may account
for different results even using the ratio to tCr (Supplementary
Table S7 and Supplementary Figure S2). These differences in the
analysis makes direct comparison across studies difficult. Even
with these differences, the relationship between CB use and sex
are very similar across studies.

Limitations
The results presented should be interpreted with caution. There
were some limitations regarding the participants. The number of
participants, while larger than some previous studies, is rather
small, particularly when examining the effect of current CB use
and sex. In addition, the results of the current study suggest that
a larger sample size with a range of CB use levels (dosage) as well
as better characterization of CB use is necessary to characterize
the impact of CB on neurochemistry. Again, although we do not
have adequate power to properly address our research questions
we do feel that the study is important in that it clearly directs
future work and highlights the importance of fully characterizing
and controlling factors such as sex and CB dose.

Currently there is no consistency across studies regarding
the CB use criterion within the chronic CB user group. The
concentration of THC being consumed is not controlled in
human studies as it is in preclinical studies making it impossible
to control dose. The results reported in the current study
demonstrate that the amount of CB use is an important
factor to consider when characterizing the impact of CB on
neurochemistry. In the current study there was a wide range
of monthly CB use with the monthly use having a standard
deviation of 27 instances per month. As expected the range of
lifetime use is also large with few participants on the far end
of the use spectrum. It will be important in future research to
ensure an equal distribution of dose in order to examine its effect
on neurochemistry.

Another source of variation across studies regarding CB
consumption is variability of THC content across geographic
regions. The THC products available vary across different regions
of the country which likely impact the effects of CB use on neural
processing. Unfortunately, we were unable to determine the THC
content of the products used by our study participants. However,
future studies should consider this issue.

Cannabis use tends to be co-morbid with some psychological
disorders like depression and anxiety (Auer et al., 2012) as
well as with the use of other drugs like alcohol and nicotine

(Blanco et al., 2018). Also, these co-morbidities may also
interact with neurochemistry making it difficult to determine
the relationship between CB use and brain function, structure
and neurochemistry. In the current study we have attempted
to control for other substance use and psychological disorders.
However, while there are no statistically significant differences
between groups it is still possible that they may interact with
brain processing differently in the two groups. This requires
more extensive research examining poly-substance users as well
as those with psychological disorders.

Magnetic resonance spectroscopy is a non-invasive technique
that allows for the measurement of a number of molecules
including Glu. Glutamate levels in humans have been reliably
reported at 3T (Hurd et al., 2004; Cohen-Gilbert et al., 2014;
Yasen et al., 2017). While sophisticated 3D MRS sequences are
available, single voxel MRS allows for a focus on discreet regions
with the higher spatial and spectral resolution necessary for
regions with susceptibility issues related to field inhomogeneities
like those close to the sinuses (Cohen-Gilbert et al., 2014) (e.g.,
the nucleus accumbens). The measurement of Glu is complicated
by the overlapping resonances of glutamine (Gln). There is some
debate as to whether Glu can be reliably separated from Gln at 3T
(Mayer and Spielman, 2005; Wijtenburg and Knight-Scott, 2011;
Ende, 2015) and it is very likely that our Glu measurements are
contaminated by Gln. Also, while MRS technology has advanced
to the point that neurometabolites can be reliably measured in
humans making it a powerful tool in the study of addiction, the
metabolite levels measured by MRS include both intracellular
and extracellular components. This is different from methods
used in preclinical studies; microlysis in animal studies primarily
measure extracellular concentrations. This difference in measures
makes the direct comparison to the preclinical literature difficult.

CONCLUSION

Cannabis (CB) use is becoming more prevalent with it being
legalized for recreational use in a number of states across
the United States and countries around the world. Therefore,
it is increasingly important to characterize the effect of CB
use on brain chemistry, structure and function as it impacts
the behavioral and cognitive consequences of use. The current
study, even with its limitations, shows that chronic CB use
is related to differences in brain chemistry and that those
differences may be affected by sex and dose. Understanding
these sex differences may be important in the design and
implementation of prevention and treatment programs for young
users. Additionally, there is the potential to use cannabinoid
agonists or antagonists for the treatment of neuropathic pain,
glaucoma, multiple sclerosis, migraine, movement disorders
and eating/appetite disorders; therefore, understanding the sex
differences in cannabinoid pharmacological effects is necessary.
Future studies designed to fully characterize the impact of chronic
CB use on neurochemistry that accounts for CB dose including
THC content, sex, age, age of CB initiation and use of other
substances are essential to developing an accurate model of the
interaction of CB use and brain chemistry.
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