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Abstract

Human and animal studies have shown that heavy cannabis (CB) use interacts with glutamatergic 

signaling. Additionally, recent studies have suggested that glutamate (Glu) may drive resting state 

functional connectivity (RSfc). The aims of the current preliminary study were to: 1) determine 

whether dorsal anterior cingulate cortex (dACC) Glu is related to RSfc between the dACC and two 

nodes of the reward network, the nucleus accumbens (NAc) and hippocampus (Hp); and 2) 

determine whether CB use interacts with the relationship between dACC Glu and RSfc. A group 

of 23 chronic CB users and 23 healthy controls participated in this multimodal MRI study. Glu 

levels were assessed in the dACC using magnetic resonance spectroscopy (MRS). Linear 

regression models were used to determine whether dACC Glu and CB use predicts RSfc between 

the dACC and the NAc and Hp. While the effect size is small, the results showed that the 

connectivity between the dACC and right NAc was predicted by the interaction between dACC 

Glu levels and monthly CB use. Additionally, while there is some suggestion that dACC Glu is 

correlated with dACC-hippocampal connectivity, unlike for dACC/NAc connectivity the 

relationship between them does not appear to be affected by CB use. These preliminary findings 

are significant in that they demonstrate the need for future studies with larger sample sizes to 

better characterize the relationship between resting state connectivity and neurochemistry as well 

as to characterize how CB use interacts with that relationship.
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Introduction

The use of cannabis has increased over the past decade in the United States, and past-year 

prevalence of cannabis (CB) use exceeds 10% (Grucza et al., 2016) with few users seeking 

treatment (Brown et al., 2003). The primary psychoactive component of cannabis (CB) is 

Δ9-tetrahydrocannabinol (THC). THC has been found in animal models to modulate 

glutamatergic (Glu) neurotransmission and concentrations. The CB1 receptor is highly 

expressed in axons and terminals of glutamatergic neurons of the CNS and acts to inhibit 

synaptic transmission or reduce neuronal excitability through depolarization induced 

suppression of inhibition or excitation. Glutamate in the extracellular space is tightly 

controlled due to its potential toxic properties. Brown and colleagues (2003) reported that 

THC reduces the release and uptake of Glu in a dose-dependent manner in rat striatal slices. 

Additionally, Straiker and Mackie (2005) showed CB receptor-mediated reduction in Glu 

transmission in mice. Exposure to THC in utero has also been found to result in reductions 

in basal extracellular Glu levels in adolescent rats (Castaldo et al., 2007). In a recent review, 

Colizzi and colleagues (2016) concluded that THC depresses endocannabinoid-mediated 

Glu synaptic transmission and that it affects Glu release, enzyme activity and the expression 

and activity of receptors and transporters.

While the evidence supporting a relationship between Glu and CB is evident in preclinical 

cellular studies, there are relatively few studies examining this relationship in humans using 

magnetic resonance spectroscopy (MRS). Several MRS studies have associated CB use with 

a reduction in Glu levels in specific brain regions (Colizzi et al., 2016; Sneider et al., 2013). 

For example, Prescot and colleagues (2011, 2013) found lower anterior cingulate (ACC) Glu 

levels in adolescent CB users compared to controls. Additionally, Chang et al (2006) and 

Muetzel et al. (2013) found lower Glu levels in the basal ganglia in CB users. Not all studies 

have found a reduction in Glu, however. For example, van de Giessen et al (2017) used PET 

to measure dopamine release and MRS to measure Glu in the striatum and hippocampus of 

controls and CB dependent participants. CB use was associated with decreased dopamine in 

the striatum; however, Glu did not differ between groups in either the striatum or the 

hippocampus. Additionally, while Muetzel et al (2013) did show Glu decreases, they were 

only observed in female users not male users. Thus, while reduced Glu or Glx in CB users is 

one of the most consistent findings, variations in findings may be related to differences in 

frequency or duration of CB use, age group examined, sex and the anatomical location of the 

measurement.

Glutamatergic efferent projections from the prefrontal cortex to the nucleus accumbens 

(NAc) appear to be a key pathway in drug addiction (Koob & Volkow, 2009) and are likely 

directly affected by cannabinoids. For example, a recent study found that THC affects 

dopamine release in the reward system indirectly via a CB1-dependent inhibition of Glu 

release onto gamma-aminobutyric acid (GABA) neurons in the NAc and the ventral 
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tegmental area (Pertwee, 2008). The NAc plays a primary role in addiction and has been 

strongly associated with mediating the expression of learned behaviors in response to a 

motivationally relevant stimulus (Kalivas, 2005). The ACC, like the NAc, is an important 

region due to its role in reward processing and motivation as well as its interconnections 

with other prefrontal regions and the dopaminergic areas of the basal ganglia that have been 

linked to addiction. The ACC has also been found to have high CB1 receptor density (Glass 

et al., 1997; Tsou et al., 1998) suggesting that CB is likely to have an impact on the 

processing and neurochemistry of the region. The dorsal ACC (dACC) has been linked to 

inhibitory control and appraisal (Botvinick et al., 2001; Venkatraman & Huettel, 2012) and 

projects to the core of the NAc via a glutamatergic signaling pathway. It should also be 

noted that the ACC is a heterogeneous region with a number of subregions that are 

histologically distinct (Palomero-Gallagher et al., 2009) and that have different 

cytoarchitecture and connectivity patterns. The current study focuses on dACC which has 

shown previously to have Glu concentration differences in CB users (Prescot et al., 2011; 

2013).

The process of addiction involves the reorganization of neural connectivity in the brain as 

well as altered neurochemistry. Resting state functional connectivity (RSfc) is a measure of 

intrinsic brain connectivity which has been used to characterize large-scale neural networks 

including the default-mode (DMN), the salience and sensorimotor networks (Smith et al., 

2009) and the reward network (Barnes et al., 2010; Di Martino et al., 2008). Additionally, 

these resting state networks have been found to be disrupted in substance abuse disorders 

(Fedota & Stein, 2015; Muller-Oehring et al, 2014; Sutherland et al., 2012). Previous studies 

examining RSfc have shown that in healthy individuals the NAc has positive connectivity 

with reward and emotion-related regions while showing negative connectivity with regions 

implicated in cognitive control and inhibition like the dACC (Barnes et al., 2010; Di Martino 

et al., 2008). Functional connectivity studies of CB use have reported alterations in both 

RSfc and cognitive task connectivity which includes changes in interhemispheric 

connectivity in adolescent CB users (Orr et al., 2013); task-based functional connectivity in 

the inhibitory control network (Filbey & Yezhuvath, 2013); and RSfc changes spanning 

from the cerebellum to the prefrontal cortex (Cheng et al., 2014).

Even though an association has been observed between glutamatergic neurotransmission, 

neuronal firing rate, and blood oxygen level dependent signals (BOLD) in the rat brain 

(Hyder et al., 2006; Smith et al., 2002), there have been very few studies examining this 

relationship in the human brain and no study examining this relationship in CB users. Recent 

studies have suggested that Glu may drive the neuronal mechanisms that underlie the 

sustained resting state in normal functioning adults (Duncan et al., 2014; Moeller et al., 

2016). For example, it has been shown that the higher the Glu concentration in the posterior 

cingulate cortex (PCC; a primary hub in the DMN) the higher was the connectivity between 

the PCC and the pregenual ACC (members of the DMN; Duncan et al., 2013; Hu et al., 

2013; Kapogiannis et al., 2013). Wagner et al. (2016) demonstrated that the connectivity 

between the Hp and the perigenual anterior cingulate cortex (pACC) which is located 

anterior to the dACC was negatively correlated with Glu in healthy adults. Also, resting state 

connectivity patterns using the pACC as a seed have been found to be associated with Glu 

levels in the pACC (Duncan et al., 2013; Enzi et al., 2012). Falkenberg and colleagues 
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(2012) reported a significant relationship between Glu levels in the dACC and BOLD 

responses in the mPFC-striatal regions. Moeller and colleagues (2016) argue that drug-

addicted individuals exhibit both abnormal Glu neurotransmission in core regions of the 

reward network and disruptions in RSfc in those same regions, leading to the interpretation 

that deficits in Glu may be responsible for differences in RSfc that have been observed in 

drug users. It should also be noted that these studies focused on different sub-regions of the 

ACC but all showed similar results – ACC Glu was related to RSfc between the ACC and 

other regions of the brain.

The goal of the current study was to examine whether CB use interacts with the relationship 

between Glu and RSfc. While there are studies that have examined the relationship between 

Glu and RSfc in healthy adults, there have been none directly examining this relationship in 

chronic CB users. This is important because if Glu drives connectivity and CB use disrupts 

the relationship between Glu and connectivity it may highlight a potential mechanism by 

which CB impacts brain functioning. In this preliminary study Glu levels in the dACC were 

measured and the RSfc between the dACC and two regions of interest, the NAc and the Hp, 

were assessed in chronic CB users and nonusers. We hypothesized that dACC Glu levels 

would predict the connectivity strength between the dACC and NAc. Additionally, because 

CB has been shown previously to interact with Glu in the ACC and with RSfc between the 

ACC and NAc it was predicted that the relationship between them would be impacted by 

chronic CB use. A recent finding reported by Wagner and colleagues (2016) showed that 

Glu levels in the Hp was correlated with connectivity between the Hp and pregenual ACC. 

Therefore, we predicted that Glu would be associated with dACC-Hp connectivity. However, 

van de Giessen et al (2017) failed to show CB related effects of Glu in the Hp even though 

the Hp also has a high density of CB1 receptors (Moldrich & Wenger, 2000), we, therefore, 

made no prediction regarding the interaction between CB use and the connectivity between 

the dACC and Hp.

Methods

Participants.

A total of 79 participants completed the MRS and resting state scans. For the MRS dataset 8 

participants’ data were too noisy due to bad shimming, 6 were removed due to exceeding the 

CRLD threshold and 10 of the remaining participants were former users leaving 55 usable 

MRS datasets. Of those 55, 3 were removed due to a probable history of alcohol use 

disorder, 3 were removed due to age (> 30), and 3 due to excessive censored scans due to 

head motion (see below). After data cleaning there were 23 current cannabis (CB) users and 

23 healthy non-user controls whose data are analyzed in the current study (see Table 1). 

Subjects were recruited by local advertisements. After detailed description of the study, 

written and verbal informed consent was obtained from each participant. All subjects were 

required to be 18 years or older, and free of any neurological disorder, head trauma with loss 

of consciousness greater than ten minutes, learning disability, and contraindication to MRI. 

Subjects were asked to refrain from alcohol or CB use the day prior to the MRI scan. The 

research protocol was approved by Indiana University’s Institutional Review Board for the 

protection of human subjects.
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Participants completed a battery of assessments including the Structured Clinical Interview 

for DSMIV-TR (SCID-IV-TR), Research Version (First et al., 2002); a written drug use 

questionnaire; a six-month time line follow back assessment to estimate current and past use 

of CB and alcohol; the short Michigan alcohol screening test (SMAST); and the Wechsler 

Abbreviated Scale of Intelligence (WASI; Wechsler, 1999). The control subjects had no 

history of substance dependence, a negative urine screen for CB and other substances, and 

no use of CB in the past three months. Participants who reported other illicit drug use were 

excluded from the study. Participants whose SMAST score indicated probable alcohol use 

disorder were eliminated from the study. Groups did not significantly differ in age, IQ score, 

sex, days since last alcohol use at the time of screening, or drinks per week (p > 0.1). 

Additionally, when examining just the CB group, there were no sex differences in age, age 

of CB use onset, monthly CB use, or lifetime CB use (p’s > 0.4); females were similar to 

males.

MRI Acquisition.

Image acquisition was performed on a 3T Siemens Tim-Trio MRI scanner. Foam pads were 

used to minimize head motion for all participants. Functional scans were acquired using a 

single-shot echo-planar-imaging (SS-EPI) sequence [repetition time (TR) = 813 ms; echo 

time (TE) = 28 ms; flip angle = 60°; 42 transverse slices; slice thickness 3.4 mm; field of 

view (FOV) = 220×220 mm2; imaging matrix = 64×64; in-plane voxel size = 3.44×3.44 

mm2]. Subjects were instructed to rest in the scanner looking at a fixation-cross on a screen 

via an LCD projector. Scans for the first 10 sec were discarded to allow the T1-

magnetisation equilibrium, resulting in a total of 1000 volumes (= 14 min). Subsequently, 

high-resolution T1-weighted anatomical images were acquired in the sagittal plane using an 

MP-RAGE sequence [TR = 1.8 s; TE = 2. 67 ms; inversion time = 0.9 s; flip angle 9°; 

imaging matrix = 256×256; 192 slices; voxel size = 1×1×1 mm3].

The MRS was performed using a single-voxel PRESS sequence [TR/TE = 2000/30 ms, 

bandwidth = 2000 Hz, 2048 data points, number of measurements = 120, scan time = 4 

min], followed by a water reference scan (8 averages). Each voxel measurement began with 

the FASTMAP shimming method twice (Gruetter, 1993; Gruetter & Tkac, 2000). Manual 

shimming was performed only if FASTMAP did not give a good shimming result (< 15 Hz). 

The full width at half maximum (FWHM) of shimming was all below 14 Hz after these 

procedures. All scans were visually checked to ensure acceptable MRI quality.

Voxel Placement.

The MR spectroscopy voxel was positioned in the dorsal ACC using the T1-weighted image. 

The voxel was positioned in the following way: scroll the sagittal slices to find the mid-slice 

of the corpus callosum, then place the voxel right above the superior and posterior genu of 

the corpus callosum with the long axis aligned with them (see Figure S1; see supplementary 

materials for overlap information). The voxel size was 15 × 20 × 25 mm3.

MRS Analysis.

There is some debate regarding whether Glu can be quantified at 3 Tesla with some studies 

reporting the concentration of the glutamate/glutamine complex (Glx). Henry et al., (2011) 
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argues that the error of Glu quantified using LCModel is relatively small (coefficient of 

variation = 7 – 10%) for PRESS MRS with TE 30 ms at 4 Tesla, but the glutamine (Gln) is 

underestimated (coefficient of variation = 16 – 141%). We, therefore, report Glu 

concentrations in the current study (Glx results are presented in the supplementary 

materials). The MRS data were processed with LCModel (http://www.s-provencher.com/, 

version 6.2–0R) using default settings for water attenuation, estimated water concentration 

and baseline modeling. LCModel was used to fit each spectrum as a weighted linear 

combination of a basis set of in vitro spectra from individual metabolite solutions. The water 

reference signal was used for Eddy current correction and scaling the metabolite 

concentrations. The Glu concentration was expressed in institutional units. LCModel also 

reports an estimated relative standard deviation (%SD) for each fitted component. Subjects 

were excluded if their fitting results with the Cramér-Rao lower bounds (CRLB) value was 

less than 17% resulting in the exclusion of 5 participants.

The Glu concentrations were normalized using a method described by Gussew and 

colleagues (2012). This method controls for MRS signal differences in tissue composition 

within the measured voxel across subjects. The high-resolution structural scan acquired to 

position the voxel during data acquisition was used to determine the tissue composition. The 

T1-weighted image was segmented for gray matter, white matter, and CSF with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The corresponding fraction of tissue 

volumes in the MRS voxel was calculated and used to correct for glutamate concentration 

with respect to heterogeneous tissue compositions according to equation 2 in the paper by 

Gussew and colleagues (2012). Additional parameters for the correction included the T1 and 

T2 relaxation time of GM (1.82/0.10 s), WM (1.08/0.07 s), and CSF (4.16/0.50 s) (Stanisz et 

al., 2005; Lin et al., 2004; Piechnik et al., 2009), relative water contents in GM (0.78), WM 

(0.65) and CSF (1.0) (Ernst et al., 1993), and T1 and T2 of glutamate in the GM (1.27/0.16 

s) and WM (1.17/0.17) (Mlynárik et al., 2001; Choi et al., 2010) respectively.

fMRI Preprocessing.

Resting-state fMRI was preprocessed similar to standard functional connectivity 

preprocessing (Smith et al., 2013) using AFNI (http://afni.nimh.nih.gov): de-spiking, slice 

timing correction, motion correction, normalization to a Talairach template, within-run 

intensity normalization to a whole-brain mode value of 1000, removal of nuisance time 

series [6 motions, white matter and ventricular signals (eroded by one voxel), with their 

derivatives] using linear regression, temporal band-pass filtering (0.009–0.08 Hz), spatial 

smoothing only in the gray matter mask (6-mm full width at half maximum). A whole brain 

signal was not included in nuisance covariates given on-going controversy regarding its 

value (Liu et al., 2017; Saad et al., 2012). Motion estimates were calculated prior to 

preprocessing as suggested by Power et al (2017). Volumes with high motion were censored 

to decrease potential motion-induced bias of functional connectivity; participants with 

greater than 100 censored frames were removed from the analysis. We used thresholds with 

a frame-wise displacement (FD) of 0.5 and a percentage of BOLD signal changes over the 

whole brain of 0.5, above which scans (including 1 backward and 2 forward volumes) were 

removed (Power et al., 2012).
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Functional Connectivity Analysis.

The dACC seed used during MRS acquisition was transformed to the resting-state fMRI 

space, Talairach space, using nonlinear transformation parameters. Due to participant 

anatomical variability and variability of the placement of the dACC MRS voxel, the 

overlapping region across participants (>75%, resulting in 63 voxels) was defined as a 

common seed region for the ACC (see Figure 2). RSfc was estimated using Pearson’s 

correlation coefficient (r) from the common dACC seed to the rest of brain and converted to 

z-scores using Fisher’s r-to-z transformation. To determine whether whole brain RSfc varied 

across groups a voxel-wise t-test was performed, in which multiple comparison in the group 

level inference was applied with the following parameters: 10,000 Monte Carlo simulation; 

individual voxel level threshold, p<0.005; individual voxel resolution, 3×3×3 mm3; and use 

of a gray matter mask. According to the simulations, we obtained a corrected significance 

level of p<0.05 with an extent threshold of 68 contiguous voxels (i.e., p<0.05, cluster-

corrected). No significant group differences were observed in the whole brain analysis (see 

Figure S2 in supplementary materials).

Target seed regions of interest with 5-mm radius were defined using the standard Talairach 

atlas of AFNI, in which the Hp (±30, 24, −9) and NAc (±12, −8, −8) were used (see Figure 

2B; see supplementary materials, figure S3 for ROI overlap information). The connectivity 

between the dACC and each target region was extracted and entered as the dependent 

variable in a linear regression model to determine whether its value is predicted by dACC 

Glu levels and monthly CB use. A two-step linear regression analysis was performed for 

each target ROI using SAS version 9.4. In the first step Glu concentration, monthly CB use, 

and drinks per week were included in the model. The second step added the interaction 

between CB use and Glu. All measures were mean centered. All parameter estimate tables 

are in the supplementary materials along with a table containing the correlations between the 

independent variables.

Results.

Voxel tissue composition.

The majority of the MRS voxel was composed of grey matter in both groups. An 

independent samples t-test was performed and the grey matter concentration did not differ 

between groups (p=0.75; control group 89% grey matter; user group 85% grey matter). 

White matter concentration was found to be different between groups with the user group 

having a larger concentration of white matter (p=0.04). The tissue fractions were then used 

to correct the concentrations as indicated by Gussew et al. (2012).

Data quality.

Independent samples t-tests were used to examine measures of data quality. No differences 

were found between the user and control groups in line-width (p=0.44) or SNR (p=0.63).

RSfc.

A Pearson correlation was performed between Glu and the connectivity measures collapsing 

across group [right NAc: r=−0.11, p=0.47; left NAc: r=−0.12, p=0.42; right Hp: r= r=−0.19, 
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p=0.21; left Hp: r=−0.30, p=0.041]. After Bonferroni correction for multiple comparisons, 

none of the correlations reached significance; however, the left Hp did show a trend.

Regression analyses were performed with the connectivity between the dACC and right NAc 

as the dependent variable and Glu, CB use, and drinks per week as the predictor variables. 

The model failed significance testing [F(3,42)=1.81, p=0.16; R2=0.11; Cohen’s f2=0.12]. 

The model that included the interaction between Glu and monthly CB use using a corrected 

alpha of 0.025 was not significant [F(4,41)=3.02, p=0.029; R2=0.23; Cohen’s f2=0.3]. When 

examining the parameter estimates, the interaction term was significant (see Table S1) 

indicating that the relationship between Glu and connectivity is dependent on CB use. This 

relationship is demonstrated in Figure 3 and S4.

The regression model with the connectivity between the dACC and the left NAc as the 

dependent variable and Glu, CB use, and drinks per week as the predictor variables failed 

significance testing [F(3,42)=1.1, p=0.36; R2=0.07; Cohen’s f2=0.075]. The model that 

included the interaction between Glu and monthly CB use also failed to reach significance 

[F<1; R2=0.07; Cohen’s f2=0.075].

The regression model that included the connectivity between the dACC and the right Hp as 

the dependent variable and Glu, CB use, and drinks per week as the predictor variables 

failed significance testing [F<1; R2=0.05; Cohen’s f2=0.05]. The model that included the 

interaction between Glu and monthly CB use also failed to reach significance [F<1; 

R2=0.07; Cohen’s f2=0.075].

The regression model that included the connectivity between the dACC and the left Hp as 

the dependent variable and Glu, CB use, and drinks per week as the predictor variable failed 

significance testing [F(3,42)=1.54, p=0.33; R2=0.1; Cohen’s f2=0.11]. The model that 

included the interaction between Glu and monthly CB use also failed to reach significance 

[F(4,41)=1.16, p=0.34; R2=0.1; Cohen’s f2=0.11]. Interestingly, while not significant at a 

corrected alpha of 0.0125, there is a suggestion that Glu predicts the connectivity between 

the dACC and left Hp (based on the t-test for Glu in both models, p’s=0.05) and that the 

relationship is not impacted by CB use (see Tables S4 and S8 in supplementary materials).

Discussion

This multimodal MRI study was designed to examine whether chronic CB use interacts with 

the relationship between Glu and the resting state functional connectivity between the dACC 

and two core nodes within the reward network, the NAc and Hp. The current findings will be 

discussed with some caution as the study may suffer from low statistical power potentially 

due to the large variance in CB usage in the user group. Although definitive conclusions are 

not drawn from the study the results do demonstrate important trends that should direct 

future work. For example, the results suggest that the relationship between Glu and the 

connectivity between the dACC and the NAc is impacted by CB use, while connectivity 

between the dACC and Hp is not.

The current results suggests that the relationship between Glu and dACC/NAc connectivity 

depends on CB use. It should be noted that the interaction between dACC Glu and CB use 
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was only observed for the connectivity between the dACC and the right NAc, not the left. 

There are at least two potential explanations for this laterality difference. One being that the 

study is underpowered. Given the low effect size for the dACC/left NAc connectivity, this is 

a distinct possibility. Another possible explanation is related to laterality differences. NAc 

dopamine transportor, D1-receptor and D2/3-receptor binding and DA synthesis capacity 

have all been observed with higher levels found in the right compared to the left (Hietala et 

al., 1999; Laakso et al., 2000; van Dyck et al., 2002; Vernaleken et al., 2007; Cannon et al., 

2009). Additionally, it was shown by Martin-Soelch et al. (2011) that dopamine release 

elicited by an unexpected monetary reward was also lateralized to the right NAc. Oberlin et 

al (2015) also reported NAc laterality differences during a pseudo self-administration task 

that separately administered a flavor conditioned stimulus of either a habitually consumed 

beer or an appetitive control drink concomitant with the unconditioned stimulus of ethanol 

intoxication or saline. They found that the right NAc responded to the conditioned stimulus 

(flavor) while the left responded to the unconditioned stimulus (intoxication). The results 

implied that the left and right NAc process different information with the left associated with 

salient changes to interoceptive, internal states (e.g., nausea or dizziness due to intoxication) 

while the right is associated with salient exteroceptive, appetitive external stimulation (e.g., 

flavor). These two studies suggest that the right NAc responds to external rewards. The 

glutamatergic connection between the ACC and NAc is thought to be responsible for drug 

seeking behavior and is responsible for cue-induced craving (see Kalivas & Volkow, 2005 

for review). The previous studies support the hypothesis that the dACC Glu interaction with 

dACC/R NAc is due to CB use having a greater impact on external reward processing 

opposed to the negative interoceptive, internal states being processed by the left NAc. 

Further studies with larger sample sizes as well as samples that include subjects with CB 

dependence are necessary to more adequately assess this hypothesis.

A relationship between Glu levels in the dACC and connectivity between the dACC and Hp 

was predicted based on previous research. mPFC and the Hp have been found in both animal 

models and humans to be connected (see Godsil et al., 2013 for review). Both the mPFC and 

hippocampus are members of the default-mode network and both have been implicated in 

cognitive reappraisal and emotion regulation (Godsil et al., 2013). The mPFC-hippocampus 

pathway has also been linked to symptoms of psychiatric disorders like depression, 

schizophrenia and anxiety disorders (Godsil et al., 2013). Interestingly, these disorders have 

all been associated with heavy CB use. However, the correlation between dACC Glu and 

connectivity with the hippocampus was not found to be significant in the current study. 

Nontheless, given the individuals with psychological disorders were removed from analysis 

future studies examining how psychiatric symptoms may contribute to this Glu/RSfc 

relationship are warranted.

Limitations:

As mentioned above, the results presented should be interpreted with some caution. The 

number of participants, while larger than some previous studies, is rather small. Also, the 

variance in the amount of CB consumed is quite large with only a few participants having 

very high use. This may result in increased variance in our measures and the appearance of 

outliers at the high use end. Currently there is no consistency across studies regarding the 

Newman et al. Page 9

Brain Imaging Behav. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CB use criterion within the chronic CB user group (e.g., 10 uses in past 12 months – Wright 

et al., 2016 – to 5 times a week in the past 12 months – Muetzal et al., 2013). Also, the 

current study did not use CB dependence as an inclusion criteria for the CB group. This 

likely contributed to the variance in our population. We argue for future studies that have a 

much larger sample that adequately samples a large range of CB use to better characterize 

how CB dose impacts Glu and the relationship between Glu and connectivity. A second 

limitation is the inability to properly control dose. The concentration of THC being 

consumed is not controlled in human studies as in preclinical studies. Together the 

inconsistency across studies and the inability to control THC consumption makes 

comparisons across human studies difficult.

MRS is a non-invasive technique that allows for the measurement of a number of molecules 

including Glu. MRS technology has advanced to the point that neurometabolites can be 

reliably measured in humans making it a powerful tool in the study of addiction, the 

metabolite levels measured by MRS include both intracellular and extracellular components. 

This is different from methods used in preclinical studies; microlysis in animal studies 

primarily measure extracellular concentrations. Because the extracellular concentrations of 

Glu are tightly controlled due to its potential toxic effects not being able to measure 

extracellular Glu specifically is a third limitation. This difference in measures makes the 

direct comparison to the animal literature difficult.

Conclusions

The results presented support previous findings and make suggestions for future research. 

The effect of CB use on the relationship between dACC Glu levels and its connectivity may 

be dependent upon the target region and therefore is not a general effect but a specific one. 

The current results show that CB use does not interact with the relationship between dACC 

Glu levels and connectivity with the hippocampus but provide some suggestion that it does 

interact with its connectivity with the nucleus accumbens. This is important because it may 

1) extend the preclinical work showing that the dACC and NAc connection is important in 

substance abuse and 2) suggest that the relationship between Glu and RSfc may have some 

utility in characterizing the impact of CB use on specific brain systems. The work presented 

is a first step and studies with a larger sample that targets a range of monthly use is 

necessary to first confirm that CB has an impact on RSfc and then to uncover the mechanism 

responsible for these relationships.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An example of the location of the voxel for MRS in the dorsal anterior cingulate (left) along 

with the resultant spectra processed by LCModel (right). The fitted spectrum (red) is 

superimposed on the original spectrum (black); the residual of fitting is on the top while the 

baseline is at the bottom. The linewidth is 0.033 ppm.
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Figure 2. 
Regions of interest for resting-state functional connectivity (rsFC). (A) Upper. Probability 

map of the dorsal anterior cingulate cortex (dACC) from each individual. Lower. Highly 

overlapped region (= 63 voxels) with >75% of individuals (= 40 subjects) as a seed region 

for FC computation. (B) Target seed spheres with 5-mm radius – hippocampus (green color; 

±30, 24, −9 at Talairach atlas of AFNI) and nucleus accumbens (blue; ±12, −8, −8).
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Figure 3. 
Relationship between the resting-state functional connectivity (rsFC) and glutamate (Glu) at 

the dorsal anterior cingulate cortex (dACC. Blue denotes control participants and grey 

denotes users.
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Table 1:

Demographics

Controls CB Users

n 23 23

#males 9 9

Age 21.4±2.3 20.9±2.8

Age of CB initiation * 16.3±2.4 years

Average monthly CB use 0 30.2±24.5 instances/month

Lifetime CB use (instances) 0.55±1.3 2097.6±5229.2

Average days since last CB use (prior to scan) * 1.4±1.3 days

Average days since last alcohol use (prior to scan) 138.9±403.2 13.6±38.2

Average drinks per week 2.3±2.9 3.7±3.2

WASI 113.7±11.1 111.1±8.7

*
5 controls have used previously
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