

Adaptive gait: Lower-limb Joint-angle Variance as a Function of Obstacle Height

Chuyi Cui¹, Brittney Muir², Jeffrey Haddad¹, Richard van Emmerik³, Shirley Rietdyk¹, Satyajit Ambike¹

1: Purdue University, Department of Health and Kinesiology, West Lafayette, IN, USA. 2: The Sage Colleges, Department of Occupational Therapy, Troy, NY, USA. 3: University of Massachusetts, Department of Kinesiology, Amherst, MA, USA

INTRODUCTION

- Tripping while walking is a main contributor to falls.
- Trail foot (Fig.1) contacts are more frequent (67-100% of all contacts).
- The swing-foot toe is the endpoint of the lower-limb-segment chain (foot, shank and thigh of both the stance and swing limbs, and pelvis) with multiple angular degrees of freedom [1].
- Variability structure of the input variables provide insights into control properties; examination of merely the average endpoint does not [2].

PURPOSE

To (a) quantify the toe-height variability when crossing obstacles of different heights, and (b) investigate the source of the toe-height variability by examining the lower-limb joint-angle variance.

METHODS

- 10 young adults (age: 23.8 ± 3.4 years, 3 females).
- 15 m walkway, obstacle (unobstructed, 3, 10, and 26 cm), 10 trials.
- Toe height and bilateral ankle, knee, hip joint flexion-extension angles isolated at two gait events in each trial
 - Unobstructed trials: time of minimum toe height of each foot.
 - Obstacle trials: time when lead toe is over the obstacle (lead-toe frame) and trail toe is over the obstacle (trail-toe frame, Fig.1).

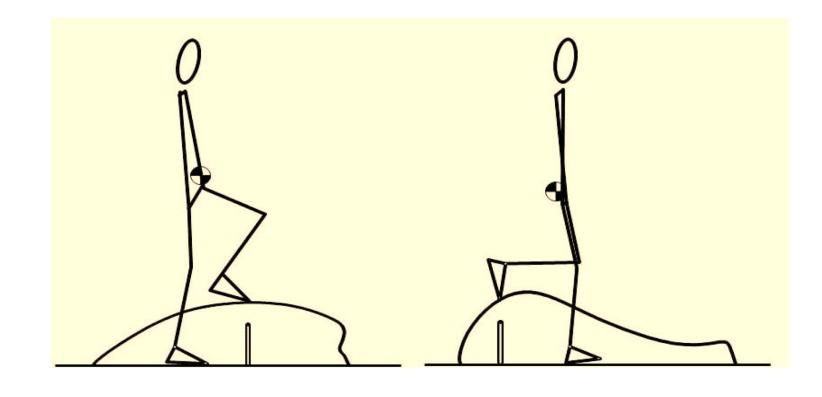


Fig. 1 Lead-toe crossing frame (left) and trail-toe crossing frame (right)

- Outcome measures (computed across trials)
- (1) Toe-height variability: standard deviation of toe height.
- (2) Total joint-angle variance: sum of the variances of all six joint angles.
- (3) Joint-angle variances in stance and swing limb: the sum of the variance in the joint angles of each limb.
- (4) Individual joint angle variance: variance of joint angle.

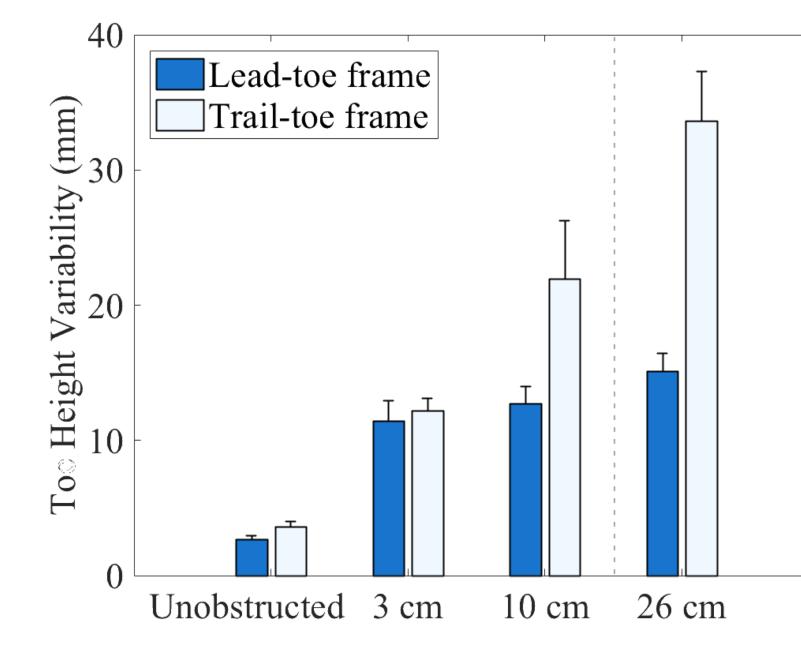


Fig. 2 Effect of obstacle height and crossing frame for toe height variability. Data for 26-cm obstacle shown but not included in statistical analysis due to obstacle contacts. Error bar indicates the standard error.

RESULTS

Obstacle contact

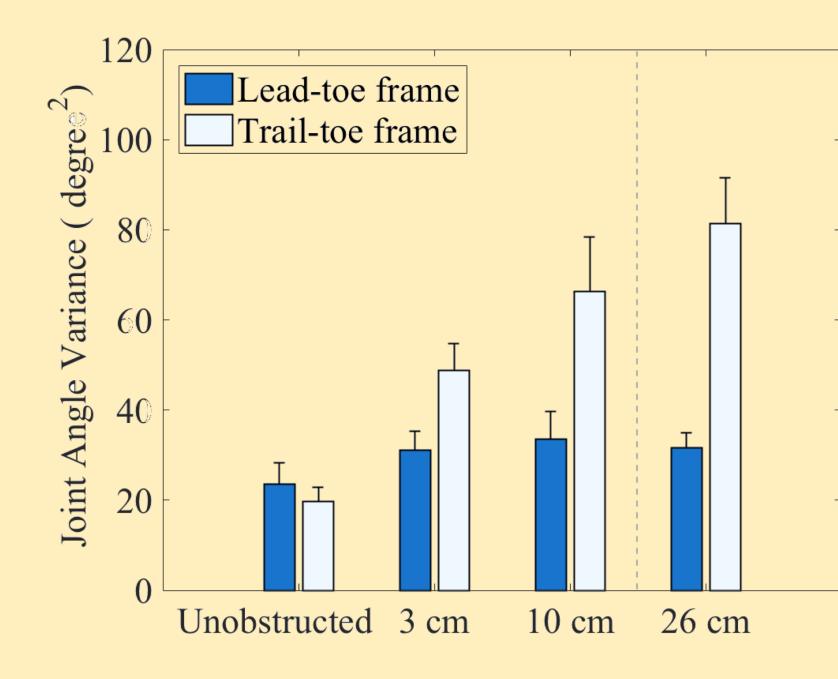
Six subjects contacted the obstacle once, all with the 26 cm obstacle. Contacting the obstacle modifies foot trajectories in subsequent trials [3], so the 26-cm obstacle condition was excluded from statistical analyses resulting in three height conditions (unobstructed, 3 cm, 10 cm).

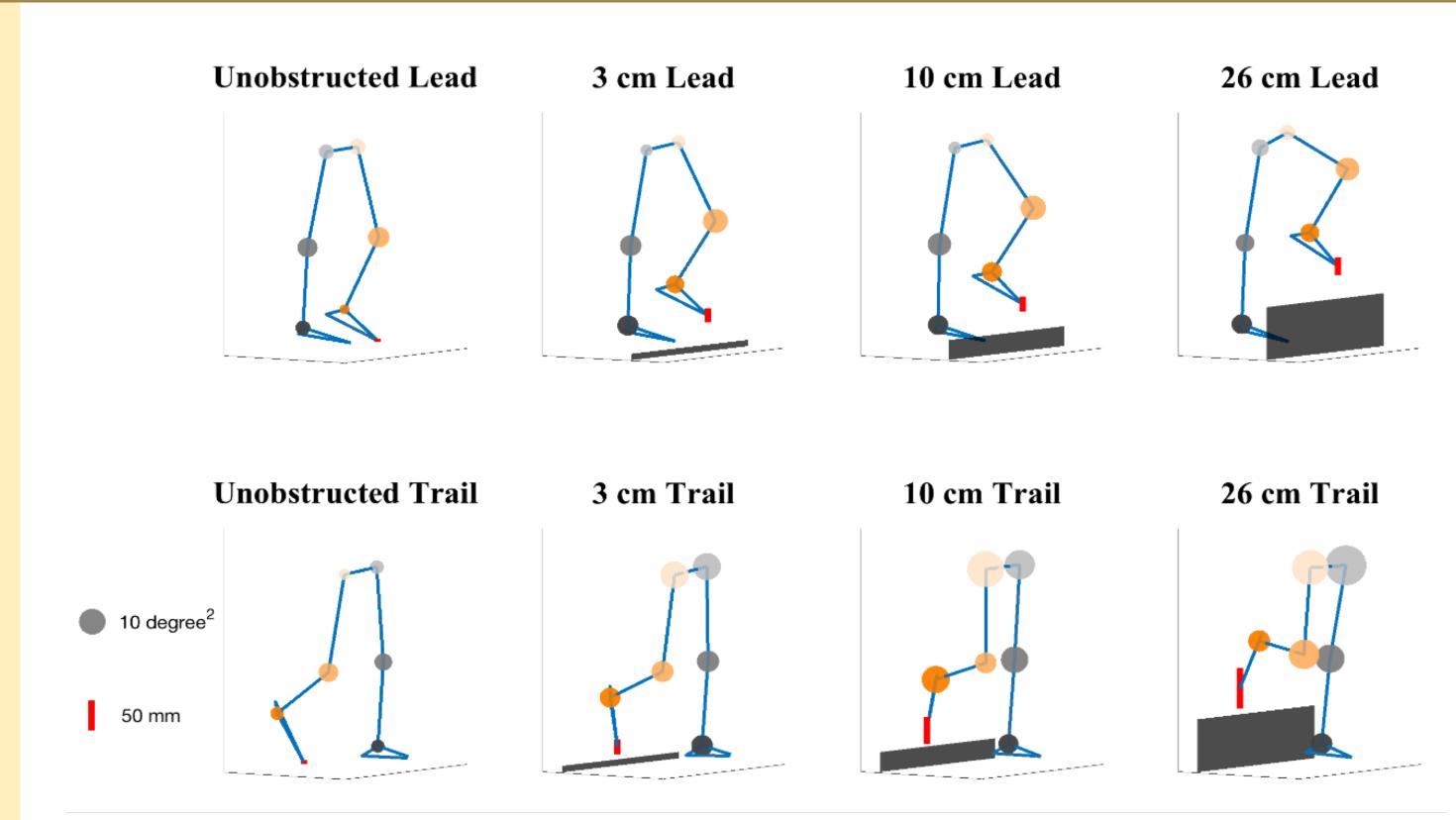
Toe-height variability

A significant *Crossing frame* × *Obstacle condition* interaction was observed (**Fig.2**; p=0.04). Post hoc analyses revealed the following:

- Trail toe-height variability was 72% higher than lead-toe variability, but only for the 10-cm obstacle (p<0.01).
- Lead toe-height variability was higher for the obstacle conditions than unobstructed walking.
- Trail toe-height variability was 237% higher for the 3-cm obstacle than unobstructed walking (p<0.01) and 79% higher (p<0.01) for the 10-cm than the 3-cm obstacle.

Total Joint-angle Variance




Fig. 3 Effect of obstacle height and crossing frame for total joint-angle variance. Data for 26-cm obstacle shown but not included in statistical analysis due to obstacle contacts. Error bar indicates the standard error.

A significant *Crossing frame* × *Obstacle condition* interaction was observed (**Fig. 3**; p=0.01). Post hoc analyses revealed the following:

- Larger total joint-angle variance for trail-toe frame than that for lead-toe frame (98% higher), but for 10-cm obstacle only (p<0.01).
- No significant obstacle-height effect on total joint-angle variance for the lead-toe frame.
- Total joint-angle variance increased 164% for the 3-cm obstacle (p<0.01) and 259% for the 10-cm obstacle (p<0.001) compared with unobstructed walking for the trail-toe frame.

In summary, higher toe height variability generally corresponded to higher total joint-angle variance, consistent with the idea that total joint variance prescribes toe variability.

However, while both toe-height variability and joint-angle variance for the trail-toe frame increased with obstacle height, only toe-height variability increased for the lead-toe frame. We plan to determine if the joint angles co-vary to control the variability in the toe height.

Fig. 4 Toe height variability and individual joint-angle variance. Length of the red bar proportional to toe height variability. Area of circle proportional to joint-angle variance. Black rectangles are obstacles.

Stance vs. Swing Joint-angle Variance

No significant difference between joint-angle variance from stance and swing limb, indicating that both limbs impact toe height variability.

Individual Joint-angle Variance

A significant *Obstacle height* × *Crossing frame* × *Joint* interaction was observed. Post hoc analyses revealed the following:

- Stance hip (p<0.001), swing hip (p<0.001) and swing ankle (p=0.05) angle variances were higher for trail-toe frame than lead-toe frame.
- Joint-angle variance was not affected by obstacle height for the leadtoe frame.
- Several joint-angle variances increased as obstacle height increases for trail-toe frame.

CONCLUSION

- Larger toe variability and total joint variance for the trail limb, especially for taller obstacles, are consistent with more failures for the trail limb and for higher obstacles [3].
- The joint angle variances are distributed over the joints of both the swing and stance limb, indicating that the contribution of the stance limb to obstacle contacts must be considered.
- Similar amount of joint-angle variance from swing and stance limbs suggests existence of compensatory covariance in the lower limb joint angles to control toe height.
- Further investigation into coordination between multiple joints of both limbs is necessary.

REFERENCES

- [1] Winter, *Phys Ther*, 1992.
- [2] Latash et al., Exerc. Sport Sci, 2002
- [3] Heijnen et al., Exp Brain Res, 2012.

Check out our Human Motor Behavior Group website