\qquad

Levers, Work and Mechanical Advantage ${ }_{(I C P .3 .2, ~ 4.4)}$

Formulas

$$
F=m a \quad m_{1} l_{1}=m_{2} l_{2} \quad W=F \times d
$$

$$
M A_{\text {lever }}=\frac{F_{\text {output }}}{F_{\text {input }}} \quad M A_{\text {lever }}=\frac{L_{\text {input }}}{L_{\text {output }}}
$$

1. A is 36 inch lever with a fulcrum in the middle is sitting on a table. If a 60 g hex nut sits three inches from the fulcrum, where must a 25 g hex nut be placed to balance the lever?
2. What mass of a single hex nut must be placed at the end of the lever in problem 1 to make the 60 g hex nut balance?
3. How much work is done when a 5 N force is used to move a lever 3 meters to raise an 8 kg mass?
4. How much force does Purdue Pete exert doing $4,000 \mathrm{~N} \cdot \mathrm{~m}$ of work moving a gigantic drum 20 meters?
5. How high does Purdue Pete lift his sledge hammer if he uses a force of 25 Newton to lift the hammer while doing 50 Joules of work?
6. A machine uses an input force of 200 N to produce an output force of 800 N . What is the mechanical advantage of this machine?
7. A machine is designed to lift an object with a weight of 12 N . If the input force for the machine is set at 4 N , what is the mechanical advantage of the machine?
8. A lever used to lift a heavy box has an input arm of 4 meters and an output arm of 0.8 meters. What is the mechanical advantage of the lever?
9. What is the mechanical advantage of a lever that has an input arm of 3 meters and an output arm of 2 meters?
10. You lift a 45 N bag of mulch 1.2 m and carry it a distance of 10 m to the garden. How much work was done?
